[问题2014A12]  解答

将问题转换成几何的语言: 设 \(\varphi,\psi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 满足 \(\varphi\psi=\psi\varphi=0\), \(\mathrm{r}(\varphi)=\mathrm{r}(\varphi^2)\), 求证: \[\mathrm{r}(\varphi+\psi)=\mathrm{r}(\varphi)+\mathrm{r}(\psi).\cdots(1)\]

要证明 (1) 式, 我们只要证明 \[\mathrm{Im}(\varphi+\psi)=\mathrm{Im\,}\varphi\oplus\mathrm{Im\,}\psi,\cdots(2)\] 再两边同取维数即可. 在证明 (2) 式之前, 我们先引用复旦高代书第 208 页复习题 37 的结论:

结论  设 \(\varphi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 满足 \(\mathrm{r}(\varphi)=\mathrm{r}(\varphi^2)\), 则 \[V=\mathrm{Ker\,}\varphi\oplus\mathrm{Im\,}\varphi.\cdots(3)\]

(2) 式的证明分成两步.

第一步证明 \(\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi=\mathrm{Im\,}\varphi\oplus\mathrm{Im\,}\psi\). 由条件 \(\varphi\psi=0\) 可得 \(\mathrm{Im\,}\psi\subseteq\mathrm{Ker\,}\varphi\), 再由 (3) 式即得 \(\mathrm{Im\,}\varphi\cap\mathrm{Im\,}\psi=0\), 从而上述和为直和.

第二步证明 \(\mathrm{Im}(\varphi+\psi)=\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi\). 由像空间的定义即得 \(\mathrm{Im}(\varphi+\psi)\subseteq\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi\). 反之, 对 \(\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi\) 中任一向量 \(\varphi(\alpha)+\psi(\beta)\), 其中 \(\alpha,\beta\in V\), 考虑 \(\alpha,\beta\) 关于 (3) 式的分解: \[\alpha=\alpha_1+\varphi(u),\,\,\,\,\beta=\beta_1+\varphi(v),\,\,\,\,\alpha_1,\beta_1\in\mathrm{Ker\,}\varphi,\,\,u,v\in V.\] 于是 \begin{eqnarray*}\varphi(\alpha)+\psi(\beta)&=&\varphi(\alpha_1+\varphi(u))+\psi(\beta_1+\varphi(v))=\varphi^2(u)+\psi(\beta_1) \\ &=& (\varphi+\psi)(\beta_1+\varphi(u))\in\mathrm{Im}(\varphi+\psi), \end{eqnarray*} 这就证明了第二步, 从而完成了 (2) 式的证明.  \(\Box\)

  在学了矩阵的 Jordan 标准形理论之后, 我们可以给出 [问题2014A12] 的一个十分简洁的代数证明.

[问题2014A12] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. python关于列表转为字典的两个小方法

    1.现在有两个列表,list1 = ['key1','key2','key3']和list2 = ['1','2','3'],把他们转为这样的字典:{'key1':'1','key2':'2','ke ...

  2. Oracle 常用数据类型(转)

    varchar2(6) 张三 --在jbk中是两个字节,在utm中是三个字节char(6) 张 三 --可以确定长度的用charclob --大存储,没事少用,当多余4000字节时,会用lob来存储, ...

  3. PHP获取远程网站的服务器时间

    <?php function get_time($server){ $data  = "HEAD / HTTP/1.1\r\n"; $data .= "Host:  ...

  4. Yii源码阅读笔记(二十一)——请求处理流程

    Yii2请求处理流程: 首先:项目路径/web/index.php (new yii\web\Application($config))->run();//根据配置文件创建App实例,先实例化y ...

  5. json转换对象 对象属性首字母为大写会出错 可以用以下方法

    package open_exe; import net.sf.json.JSONObject; import net.sf.json.JsonConfig; import net.sf.json.u ...

  6. java - 第一阶段总结

    java - 第一阶段总结 递归 递归:能不用就不用,因为效率极低 package over; //递归 public class Fi { public static void main(Strin ...

  7. SQL Server索引进阶第五篇:索引包含列 .

    包含列解析所谓的包含列就是包含在非聚集索引中,并且不是索引列中的列.或者说的更通俗一点就是:把一些底层数据表的数据列包含在非聚集索引的索引页中,而这些数据列又不是索引列,那么这些列就是包含列.同时,这 ...

  8. JS阻止链接跳转代码

    刷新后focus在第一个标签 onload="$('#input_email').focus(); " $(document).ready(function(){ $(" ...

  9. rabbitmq redis

    RabbitMQ RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统. 对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Se ...

  10. ios - GCD简单小结

    首先GCD两个名词: 队列 同步异步. 队列: 任务放到队列,队列中的任务执行方式取决于执行队列中任务的方式---同步异步. 串行队列: 任务顺序执行,可以叫阻塞队列.只有前面任务完成才执行后面的. ...