一、什么是对齐,以及为什么要对齐:

1. 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。

2. 对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况, 但是最常见的是如果不按照适合其平台的要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为 32位)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低 字节进行拼凑才能得到该int数据。显然在读取效率上下降很多。这也是空间和时间的博弈。

二、对齐的实现

通常,我们写程序的时候,不需要考虑对齐问题。编译器会替我们选择适合目标平台的对齐策略。当然,我们也可以通知给编译器传递预编译指令而改变对指定数据的对齐方法。
但是,正因为我们一般不需要关心这个问题,所以因为编辑器对数据存放做了对齐,而我们不了解的话,常常会对一些问题感到迷惑。最常见的就是struct数据结构的sizeof结果,出乎意料。为此,我们需要对对齐算法所了解。
对齐的算法:
由于各个平台和编译器的不同,现以本人使用的gcc version 3.2.2编译器(32位x86平台)为例子,来讨论编译器对struct数据结构中的各成员如何进行对齐的。
设结构体如下定义:
struct A {
    int a;
    char b;
    short c;
};
结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个。所以A用到的空间应该是7字节。但是因为编译器要对数据成员在空间上进行对齐。
所以使用sizeof(strcut A)值为8。
现在把该结构体调整成员变量的顺序。
struct B {
    char b;
    int a;
    short c;
};
这时候同样是总共7个字节的变量,但是sizeof(struct B)的值却是12。
下面我们使用预编译指令#pragma pack (value)来告诉编译器,使用我们指定的对齐值来取代缺省的。
#progma pack (2) /*指定按2字节对齐*/
struct C {
    char b;
    int a;
    short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct C)值是8。

修改对齐值为1:
#progma pack (1) /*指定按1字节对齐*/
struct D {
    char b;
    int a;
    short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct D)值为7。

对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。
这里面有四个概念值:
1)数据类型自身的对齐值:就是上面交代的基本数据类型的自身对齐值。

2)指定对齐值:#pragma pack (value)时的指定对齐值value。

3)结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。

4)数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中较小的那个值。

有了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是 数据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整 数倍,结合下面例子理解)。这样就不难理解上面的几个例子的值了。
例子分析:
分析例子B;
struct B {
    char b;
    int a;
    short c;
};
假设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指 定对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为 4,所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,复核0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐 值为2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存 放的都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求, 0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B 共有12个字节,sizeof(struct B)=12;

同理,分析上面例子C:
#pragma pack (2) /*指定按2字节对齐*/
struct C {
    char b;
    int a;
    short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
第一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1= 0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续 字节中,符合0x0002%2=0。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放
在0x0006、0x0007中,符合0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。又C的自身对齐值为4,所以 C的有效对齐值为2。又8%2=0,C只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.

有 了以上的解释,相信你对C语言的字节对齐概念应该有了清楚的认识了吧。在网络程序中,掌握这个概念可是很重要的喔,在不同平台之间(比如在Windows 和Linux之间)传递2进制流(比如结构体),那么在这两个平台间必须要定义相同的对齐方式,不然莫名其妙的出了一些错,可是很难排查的哦^_^。

C语言:内存字节对齐详解[转载]的更多相关文章

  1. C语言:内存字节对齐详解

    转:http://blog.csdn.net/arethe/article/details/2548867 一.什么是对齐,以及为什么要对齐: 1. 现代计算机中内存空间都是按照byte划分的,从理论 ...

  2. C/C++结构体字节对齐详解

    结构体的sizeof先看一个结构体:struct S1{    char c;    int i;}; sizeof(S1)在VC6中按默认设置得到的结果为8.我们先看看sizeof的定义——size ...

  3. struct 字节对齐详解

    一.什么是字节对齐,为什么要对齐? 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问, ...

  4. C语言内存对齐详解(2)

    接上一篇:C语言内存对齐详解(1) VC对结构的存储的特殊处理确实提高CPU存储变量的速度,但是有时候也带来了一些麻烦,我们也屏蔽掉变量默认的对齐方式,自己可以设定变量的对齐方式.VC 中提供了#pr ...

  5. C语言内存对齐详解(3)

    接上一篇:C语言内存对齐详解(2) 在minix的stdarg.h文件中,定义了如下一个宏: /* Amount of space required in an argument list for a ...

  6. 转载:C语言的字节对齐及#pragma pack的使用

    C语言的字节对齐及#pragma pack的使用   C编译器的缺省字节对齐方式(自然对界) 在缺省情况下,C编译器为每一个变量或是数据单元按其自然对界条件分配空间. 在结构中,编译器为结构的每个成员 ...

  7. c语言,内存字节对齐

    引用:内存字节对齐 写出一个struct,然后sizeof,你会不会经常对结果感到奇怪?sizeof的结果往往都比你声明的变量总长度要大,这是怎么回事呢?讲讲字节对齐吧. /************* ...

  8. 【C语言】字节对齐(内存对齐)

    数据对齐 1.  对齐原则: [原则1]数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma p ...

  9. malloc 与 free函数详解<转载>

    malloc和free函数详解   本文介绍malloc和free函数的内容. 在C中,对内存的管理是相当重要.下面开始介绍这两个函数: 一.malloc()和free()的基本概念以及基本用法: 1 ...

随机推荐

  1. 台式机的集显HD4600驱动-黑苹果之路

    台式机的集显HD4600驱动-黑苹果之路 半桶水还真可怕,整了一个礼拜的台式机黑苹果,竟然都没搞定asus z87-k的HD4600核显.最终为了不耽误工作,上淘宝,花钱买服务.显卡驱动分为变色龙和c ...

  2. yii 基础版用rbac-plus

    1.将高级版的common/models/user.php覆盖掉基础版的models/user.php 2.将命名空间 namespace common\models;改为 namespace app ...

  3. WPF部署问题 解决:The application requires that the assembly...be installed in the GAC

    vs-->引用-->找到问题类库-->邮件属性--->特定版本-->false done

  4. 修改easyui中datagrid表头和数据不能分开对齐的BUG。

    easyui的datagrid中表头和列只能同时全部向左对齐,全部向右对齐或者居中对齐. 有时候有需求,数据向左或向右,表头居中对齐. 在不修改源码的情况下.下面的代码可以实现该功能. 把下面代码放在 ...

  5. pthread_attr_setdetachstate

    pthread_create函数可以指定新创建线程的属性. pthread_attr_setdetachstate() set  detach state attribute in thread at ...

  6. 学习OpenCV——行人检测&人脸检测(总算运行出来了)

    之前运行haar特征的adaboost算法人脸检测一直出错,加上今天的HOG&SVM行人检测程序,一直报错. 今天总算发现自己犯了多么白痴的错误——是因为外部依赖项lib文件没有添加完整,想一 ...

  7. Spring MVC 入门示例讲解

    在本例中,我们将使用Spring MVC框架构建一个入门级web应用程序.Spring MVC 是Spring框架最重要的的模块之一.它以强大的Spring IoC容器为基础,并充分利用容器的特性来简 ...

  8. SVN----------项目服务器上的svn客户端自动更新设置。

    1.局域网服务器上搭建了PHP项目运行的环境,然后怎么样讲根目录拉去到的项目可以随着开发人员提交的代码,自动更新成最新的代码. 2.首先将svn版本库上的代码拉取到www目录下或者你的根目录. 3.然 ...

  9. 【转】ACM/ICPC生涯总结暨退役宣言—alpc55

    转自:http://hi.baidu.com/accplaystation/item/ca4c2ec565fa0b7fced4f811 ACM/ICPC生涯总结暨退役宣言—alpc55 前言 早就该写 ...

  10. windows系统调用 互斥体mutex

    #include "iostream" #include "windows.h" using namespace std; class CCountUpDown ...