aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsoAAAGvCAIAAADNJWRjAAAgAElEQVR4nO3dPXLqSrs24DMJcgbi1Axku0icMYEVkUDkfCeuYgQEruWUfAWu2onLEZnDdwg6gX7ollpCMu2fZV9X+fveZSEJIfZx3zz9SPxfAQCQ1f999gEAAN+NeAFfw8PNaj5bzWebu+dzqz4/XifWfL27Ws1nq/nN09D+o0fPbNLyst2MPcIzque93r72rVGfjfuHgd3s79vrhGem+vfgHkYfDzCReAFfQTVSDg/2r3dXq+vtazSI7u/nV48vRVEUT7ez1Xy2ut2nN37/eFHvLflTHWS05leJF83Jjw4SuIR4AZepB8IxP31DXZUMmp90RKhGwc3dvhlEqw2vt6+nR3tKC58eLx7Kza8eX8bHi+Hx/k3xYsr7laVUAz+TeAGXuTxeNHu43Tc5I73my3Yzv7p/aOLF9vH6qgoH9djfF1OSSeJdJkf6ZnleJsSL+sB640UnkN0E5Z8oXrRPvngBH0K8gE91Gu3KMb6/UN8/Lm7untOVgwvjRRUI6kfb8eL58bobEerjr5bv75txvS9eTBzvo7LN2+PFuEQFvJV4AZ/nNLIGYeJUh4gTxlC82EcTAa1YUBRFT7vDmSpCqw4Rx4t6gA8PshnRq6eu1wnrK3niRVEUl02O3Dx18ofSBWQkXsAnSWaL9kNDrQOnwa9VVyjXSSaJuKQRDf8d7QDRepYmBjU7HAgKt/spkyOngX9wgBcv4OsSL+ATBLX9evBuXSsRDtXV+J0eDqOZgtt90SSJuD80nE2IZjeS+aYoOtMcPZMjUToJr3/pHOftzeh4Eeyn70KYYLX7h/ZTpyZHWuc5PubwSNrTVcBbiBdwqXYfwLmPwkGfRDCAdS/FDLs1o67P/o/d19vX+njiT97tTeqLWvs/pneLE53WzuaFDF/8+Xp3tbl7nlC9iNpUB8b48Pi3b4sXrfciWeMB3kC8gEtNjRdFOYy1BrCeOz083QaTEcEFqPVq+/v51ePdTd3bePX40p0yKIKZgqDkEI7inZE+ER26V44E17zEW6du/DU6XtSP3twP37iiv8AzbnIkOsnhOzXmTlzAMPECvoZzN5Lqv6tEdFutzXXqYpBgaC+K/f319rU9irfmR7oTH8kLU5v6QavGcEm8CG7gkWoiKYWB4G29F49Dd+lIh0JgPPECvoaL40Xq03y8bTROn0bi8tFUFIj3k7rvRXSjjuS9N5r9jIsX8bWyyUpM+8VOihfNUz+JF/CexAv4GsbcBjv+NN8ZpPvumVGXIsKsEN4Ws3Mha7qpInlbrXB+5PJ40dvekezAaMJHsrOk06Fyuy+aPNR96tZ9QqN6DzCZeAFfw/l4EX8vyWAraCoWhCNlvavWNSnt/BEPrum7dgY3zjpJf+laIx0vTscfhon62BKljjfEi/5bp8fxojeFAOOIF/B2g9+yMbHYPupLvNoTEIkuy/YI3R2eE9ejjroGZMI3pkbx4um2XQZIxIu+m4mFD/XcIXTC5MjASY7ixYRvWwWSxAt4uw+PF0M3lqhGx4e4BtDZbXPM3SJEenTvHGHfSxi8giZ1pUZrlmfg5ac7LSbHi+5US+eYzYZAHuIFfA3n4kU0EEbf6NFJBt3vSEv0Z7S7Gfpu+TB+AE6ErbjekPxi2GCrwaE9vl1p4r5kRTHyypF078iY0hEwmngBX8PZ6kU5R5C83dPLdtOKCw83zZqvdzetYfvpNvksz4/XqQE+HoAvupIi2lXrlmIjbpH5st2kIlT8Es7FC+BDiBcAQGbiBQCQmXgBAGQmXgAAmYkXAEBm4gUAkJl4AQBkJl4AAJmJFwBAZuIFf5vDerHcHZtfj7tl/fthvUhZ7o7lao31Ifq1WRruc30ojrtl+EzhEZzW/QHe8nr7zl17xwMrecvgbyZe8PXEMaE9XCTGpIFhqh5vquGnXtD8Guyi+b1+sD1W1eu8YaxqfTl4dAPsvm8rnbr83bxXvOi8CT0Pf85bVgreuPru431fwtKzvPetH/FlLod1GKHK/8NY7o6dIH0+ycGHEy/4eoK0cC5LnB022vGi2mDoo3DqsfqP+lvHqv198OVeT7en7/p6uo3Hrbf++z2Ner09paP2EJg8uem1P/ktq77kpfsdK32nvWf5qLe+RxgvDuvTC45jx2EtYPAFiRd8Pe14seuf9GiGje4A0ywP4kXz4Xbgo/Dp2ad+FD7uluP+zp++wWt/H35mPX0z2dTlrdO3WO+a81FOGbTG4ygNnBt4x8aL8KV3p7AmlJyabT7zLXt+vJ4UI8alveDL26bEi+Nu2Q4U8cSQuR++HPGCr+ct1YvWuNJZftwtyzH3lEb6Ku3HY7Wfd4oX+/vmM3H7m0LLL1ifvjzSlNDrQ4p+qV9B8Ml/feaQ3xAv2ue3Ey/KFYa6ZT75LQu/nTV2QbwI3vop8aJTnojiRdB9BF+IeMHX0+m9iEaW3ngxonpxvtLeX7xf7nYXTuSX36geDlrvFi+iKkVnIJo4IE2PF1GqqRa0+3ETu4w3+9y37OFmNb/aBG0TzXmOeyb6einiqlL3rR9e/3RSF8tltzbRjmVKF3xB4gVfT6J6EYxHF1QvTgNN9Ws06nSGoOx9gqXnx+t6Av6T4sVpRB4VMqbGi+ppwspAdCqTJYOwteC02ue9ZQ83nSCYKGY83aaTQc/y4K0ftX5ZiFou26fG5Ah/AfGCryc9ORKMFBfGi7ht8DTeVn+h05+Gg5Ht4qscm8L7Z8WL+HWeyxhT4kW507jFI75g9LBeLJfL/paa5pg+9y1rn+rnx+tEm2fvHEqe5fW71w5krStKOr/DFyBe8PW8sfciVTiP4kXwwKkaUtWZU30D7a7CbPHi9FH43Vo7R8SL/mXdHY6/cqSzr7qFonyg3Ne5t7XZ8PPesvZ4H7VN9K92bnlPFeRMvChasa0VJ5Qv+IrEC76eTu9F+9Hz1YtGp3rRLG7m9detj369Y1VwBBP7BB9ugia+6JKEd7gwdUzvxTo8g+dGprdcOdLSLS6Nixef95bFF5G+3l1VxYyX7eY0uxFMdvQt73vr+9Zvn5RWJagJaa3rSKQLvhzxgq/nLdWLc/tKjFVBdon+QMdjVVXCT4xzHQNj1f4+vIFSKxM83KRvkzV1+ekln6tehAFu1M01v0i8+Mi3rCii7sumStT3VuZa3jop3VOw3B1brZ2uG+ErEi/4SwR/UeNJ6OSw0Vm7+2k2NUvQ6S2MVkrcPuJHuCBenN6Hdsdl2AeaHiS9ZfA3Ey+AYRf3mgA/j3gBDBMvgMnECwAgM/ECAMhMvAAAMhMvAIDMxAsAIDPxAgDITLwAADITL+BHqm6COeKeFr7SAphOvIAfIPySitbX2ne/06z1jRZJ0+PG693V4FelAN+KeAE/SVWtSCeIU+Co0kPrez7efvvOEV/0Cnwr4gX8AId1881u9RduVkEh8U329VeeD0h9R+fwF8ZePb7Uv71sN6cvIAW+J/ECfoIqRVTJIZ0e6mjwxupFf7x4uFlFeWJ/b4oEvjvxAn6GU7JYH4Kg0FO9aOLFxT0XhXgBP5F4AT9EWF0YGS8yES/g5xEv4KcIrhFJtnZWMeO4Wy7Wh/7LR6ZHD/ECfh7xAn6IMjCUGWKoehFdsxo9dlj39W6eobUTfhzxAn6EMiqUlYnBeBFniuNuuVjujkOXhYSr9q3iwlT4acQL+AHqWBFdmpqc92hVLI675dhZkXMJ5OHGbbXg5xAv4PvrNGv2dm+WD5zSR+u61MuuIAF+DvECAMhMvAAAMhMvAIDMxAsAIDPxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAyEy8AgMzECwAgM/ECAMhMvAAAMhMvAIDMxAsAIDPxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAyEy8AgMzECwAgs0nxYn8/n63mN0/170+3s9V8dv/Q/nflZbsJVu7u5Ok2Xh8A+BbeL16UK89Wt/v0Th5uVvPZaj7b3D1f9AoAgC/mbfHi+fF6VoaD9E8ZKV62m3mnpBFmlJftRrwAgG9nbLwoixP1z9Xjy2lh7+RIUbzeXa1u968v2/uBLFLvDQD4Ht6z9yKljindngwA4Ju4KF4MCKodwfr1dEnZe2FaBAC+pTfGi9e7qxGTHalqx/XVJljZlSMA8P1cFC/K8kMwLVK2fPbEi4eb1Xx2/9C6ckTjBQB8N2+IF7PV/Or+dmq8aP7dKYFcb19zvyoA4BONjBfhlahvqF5Um98/FHHmqHfbvjcGAPAX+4jei/uyzbOqUsQzJi/bjeoFAHwvH9R78XTb2+8JAHwzH9ja2dkJAPAtvWO8CCZQhAkA+EGmxIvypljX29cxvRcPN03+GFxZaycAfDdj40UTEcobYYXVi8CpevH6cLMRGgDgR5o0OQIAcJ54AQBkJl4AAJmJFwBAZuIFAJCZeAEAZCZeAACZiRcAQGbiBQCQmXgBAGQmXgAAmYkXAEBm4gUAkJl4AQBkJl4AAJmJFwBAZuIFAJCZeAEAZCZeAACZiRcAQGbiBQCQmXgBAGQmXgAAmY2NF4f1IrRex79XSw+p7Za747id9lgfiuK4W55fsf+JxjnulsnXED2+WO6OqePue/LDemiXbz3M5C6nvkft9+a4W6Zex/l3qee1957P425ZblKfnPb/tp8/WFi/+t6z0LNd4tjiRwf/Sx2328M6fr3hqmN3D/A9TKpeBH+TO38t03/ux/9RbYac5J5Oj57f/o2Ou+ViuUwNiE22qZ+gM8IMvcz2mJPBYd0fZ0a/R+3TfNwtF8v1eplrFOw/n9WxrQ/l/386m8fdMp1Q3xQvhs58Ml20123nqjgS9e7xtEL1r8M6Q/YF+LtcGi+aRdE/xqg/ro5ZrQ4PAxniwnjRDEW9Y1IwWA/GizElmUlxY3yNpyhGvkfhCV3U/3saHTPkoaHzmfwvZH3oLF/udsFLX++ah9v1rOrcjzzz7adJVsdO/y21/8NKxYvEMy93x3pxHDYAfoT88SK5ep/TuJysXrT/Ig8NIBf86Y6rAfWQG76M+IkGJ0eyjyLnK0DhiR4bAZe7Y7XGYbdsnb5jZ8nkIx44n+Fa4bMErzMa0kdXL0ae+e7OE4WcRLzoyc3p9+a4W4Z1mfZOAb67sfEi/tu6PpyPF61R5dzkyZh4MSKvTBY0HJw+aCe6BoYmJIrWik1FPGsOio4gNZSOfo9Ox1aGi1RgWq/fNqkz7nxW8wVVdaKsn6yXzfgbvbqp8eLcmW/Hi+WyHX/S8SJ+/tYvyYmUViCRLoAfJEP14vTZrjUKdPoGk/HijNagNOJz/Cj1h/fwj35cx48nCeoDTRTXW6NH/JH1eIyOLFv3ae8n9dHvUbrRofdJz5zK+gnHnM/T8vJVVPtfHw7rJpcEJ+qwXqzX67BTtTWdkQwl/Wc+WRppB5qheBEXZtoNF91NAH6gS+NF85e486kunH0eTg31Di/MDhM/anebArpLmpB0WC+XVedjnKGSF1qcQsluWR/yZeNNpyFiSrxIvEdx2Eue2KkHPOl8dg6hXlT9R9OKLK1jHTE5MnDmU70X8bENZYV29BioXnT+T0LmAH6OC+NF3LxWOawTf9a7w8G0SsOwLJf99XZ1HnfL5W5Xv+L+rr/6VaUvCX37yB0c32kAHLga9Ox7FA6GZfmgtbd3PZ89jZDF6WqTqB4xdnJk7Jnvb+wIWlL64kV8YoarF+GhZr96COBre0O8iD8Dh5/og9GgMz4N9E2kR4rWX/EBqad7i4HhMHqK9OGcPgR3jiT6WD21pWFsCgs+hJ99j7pP8ZHxovWOd4oV3WMpT3/0UqPTEs8BdbaND2egbzS18PREy92xdV5Ou+qrXjRHB/CzTIgX7b+W1UiQ7sQcHy+Ou/XyNFJUXYZvqMxf/umwZzg87tbRFEP4SGdAS77M09ENhIvRuaNpVeh/bNR7dGon+eh4cTwcjkE8aPVntF/byOrF6DN/Nl60O2DD6Zz4rJxO01D1YuCpAL6rsfGi9akyyADRB+XwyobR1Ytgje6n8dFH927x4vTo+XiRHpbHDCwjroqJs0PzeTn6eD7qPWpfipql96Jr8HzWUzbr+ihPhxtcfFKtOSJejD/zPb0XZ3bV6X4pzrZrdBpclDGAn2PS5Eip/Yc20cNf/YneDU2Ed67B6I7UgykjLkfn+Fw4Ll70dquWLzjd4nB+YBns1RzcSbv5sVl27j0KH+2LSROnZjoH1tt70bmsqLskunA1fCARLw7jz3y6ehG90PZRR8EtuWa1n+ax9aF78qQL4Ad5Q7zgHaicA/CNiBcAQGbiBQCQmXgBAGQmXgAAmYkXAEBm4gUAkJl4AQBkJl4AAJmJFwBAZuIFAJCZeAEAZCZeAACZiRcAQGbiBQCQmXgBAGQmXgAAmYkXAEBm4gUAkJl4AQBkJl4AAJmJFwBAZuIFAJCZeAEAZDYlXjzcrOazzd1za/HT7Ww1n63mN0+9Wz4/Xic2BAC+pQnx4vXuajWf3T/ES1+2m3kZLzoPVZ4fr4dXAAC+lbHxoi5R1D/X29eiKIr9/Xy2ml89PpQho6+AUSeMaisA4DsbX73Y34f54OX5tQ4N5axHWdvoTRh1kcMUCQB8e1PjxdVmPlvd7p/urjbzuJ5x+rl6fElsfyZ/AADfxeh48bLdzGeb25syXhQv2006KOzvyxW6Hm50YADATzA6XjzcrOaz+7ttFS+qrov653b7eD3b3O0fr3vrE6fuDR0YAPCtTWrtrFs4m3hx+sfZeBHFEQUMAPjG3njlyOZuOyleVI0Xt/vmH3lfBgDwdUy8a+fL2yZHqpXvH4rTtayp9k8A4Bu4LF6Mq15UlY+mYlH2eOrAAIBv6v3jRXXBSFiuiG6YAQB8M5f1XpyfHAmnRQLVXbZMkQDAN5SrelFOfDzH8aLuz0g1crrLFgB8V+8XL4ayRWnEV60CAH+fC+PFzX39TSJ1NaLqqGi3c6bVX3XmOlUA+EYmxgsAgHPECwAgM/ECAMhMvAAAMhMvAIDMxAsAIDPxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAymxQvjrvlcneMlx3Wi8Vifehbf9HZoLv1oJ7tj7tl+mmPu+W5XbYP+LCOn6X9++l1H9bllu3/BQACU+LFcbdsjablku7yk8O6N3xc4LhbLpbLnoAx8hiSOWS5O6YzQ7nwsF6sD6fHj7uldAEAHWPjRavMsD7EtYxUXaNoHsocMJq4MDK79K1WH3RVrSgPtFtPWe9SQWR96ASU4UINAPwYE6oX0af6zii8XK97EsbQ9Ml0h3U4jvdMv8RpZyBepOoXh93ukNhL9ZKjU1A/PJCuAODnGR8vgomBvpaDTtNCvXB5rgdjnONuWWeLU2RIdWGMixenfbbaMQ7r5e4YVV0O68Visdzt1k2Z4rhbL5sn0YMBAIHR8SIOFkHxohlXkx/hq/JC7wzJmU7M0w6rAT78tVVLCfbfjRfJvVYHV6aiKBsFQSZ8rvLlV8e8PhzWTdZRvACAxth4EcWA5W53Glib0NF3XUkzMr99CO7WH7pLwnmSEdWLYPXm0I6HQ1CfOMWIZoN0kUS6AIDIxPtepKsXffEiHpGzjsLDXZ0X9F60rA/Jq2ervddXsEgXABCYHi8Wi8VivR5RvYibMIsxt8GYdiCXxovUTtPH1+7DiCdphAsAiEy/MHVc9aLntlfZboORLV6Eq3bKFPW8yOFwDEod3etn9HUCQODNkyPxbSyLIhyoz93JM8Pn/feKF71HdqrbLJq7b4U9GkoYAFC7IF6UXZD1DamiToUzY20VP8bdvzsdDXoiw9hdni4yHfH0TaKIn+bdJn4A4C/nK80AgMzECwAgM/ECAMhMvAAAMhMvAIDMxAsAIDPxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAyEy8AgMzECwAgM/ECAMhMvAAAMhMvAIDMxAsAIDPxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAymxIvHm5W89nm7rm1+Ol2tprPVvObp+HNX7ab+Ww1v3p8mXqQAMDfZEK8eL27Ws1n9w/x0io0zBIPFck1xQsA+ObGxou6RFH/XG9fi6Io9vdlYngoo0NcwHi4Cdbsxovnx+sRoQQA+NuMr17s76Os8Pxa54NyuqSsbUQJQ7wAgB9pary42sxnq9v9093VZh7XM04/dYAQLwDgRxodL162m/lsc3tTxoviZbtJ93Lu78sVCvECAH6o0fHi4WY1n93fbat4UXVd1D+328fr2eZu/3gdzI+U8eLcj3gBAN/MpNbOuoWziRenf6TiRYsrRwDgZ3jjlSObu614AQAkTbxr58v4yZFqhdPcRzdeVLMn5+7HBQD8VS6LF0PVC/ECAH4o8QIAyOyy3guTIwBAR67qxb4oivpWFuIFAPxo7x4vRvyIFwDwrVwYL27uq7mS5/o7RxLf2N5L9QIAvqOJ8QIA4BzxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAyEy8AgMzECwAgM/ECAMhMvAAAMhMvAIDMpsWLw3qx3B1Pvx93y0W85PRAZ/FhvVgs1ofkjo+7ZXI/nZXi7dvHc3qeQT3PdNwt0wd43C3P7bL90tpH1jnS5gwd1uWW7f9tv6ZgYX0iuidkeDsA+BhT4kV7NDvulovlep0IBt1xr1wyNB4e1r3ho2+nWQfP4265WC57AkZH+miTOWS5Ow5lhsN6sT6cHj/ulokDeGu8OH9WASC/8fGi+rhd1xmCj/pxWaJVPKiGwSaBpOoap2cYqm4k9jqqKDFKMwyPHI/7VqtfXlWtKF9St56y3qWCyPrQeVHL3S7YONisfQaqF3++dCNuAPDuxsaLaNg87JatUeoYLYk+a3cGvOV63ZMw+qdPolByWCcKIQOx5azDOswmPRM18RMMxIvueL7cHXa7Q2Iv1cmJTlb9cPclR0/SU70wGwLAFzAyXpwyQhkukp/I19WQG5T7+0a7vqaJ5TLdg9Eea7vrvTVeBO0jp8iQ6sIYFy9O+2zVCQ7r5e4Y5YHDOqxOlLWO9bJ5knZGmxQv+osYwgcA729i78WYwSkOFsFA12ycjAJV0SA9Q5L8KN8egIPP/UNzA9GO2r+2qi7xmN6KF8m9Vi+jPJwoRUV9sKfnKl9Fdczrw2HdZJ346dbr8v8FJzN4oclQcjxGz33R7BEAjDc6XsTDfm8PY+uh5W53Gi6b0NF3XUkz3iZ7RROfwYN5jMmzAt36Q3dJOE8yonoRH051Og6HoD5xihHNBukiSXQS2lMoIydHDrvlMnprAOBjjI0X4af1ZEBIXImZqF70xYt4oOwGjP5GhKAp5NK6/3BX5wW9Fy09sxfV3usrWKJ6xNjJkeNuGZY4kkQNAN7bG2+rNSpeLBaLxXo9onoRt1YWie7KgT7HoYXT5IgXqZ2mx/N2H0ZcrOie3fLsRRmlVSg69t5vJOr30H0BwHubFC/q4W19GIgXh6g94Hz1oudmVvFAeDZejLgFxKiXlyVehKt2yhT1vMjhcAziQfdKm/ZdusZUL5Jn4bStcAHAxxgZL+ILTwd7LyqnyZH45pTV1uFtGobudRHMGCTG6OjpLi76v1e86D2wU4Vn0dx9K+zRmHphavq5XKsKwEd7z8mRJl6UvY3NzbjqfJCYBGir40e6ehGFjsSiAakBtycyjN1l6xZYw0/fJIr4aRJTRGFjaPBAIl60ckR4MbFuCwA+kq80AwAyEy8AgMzECwAgM/ECAMhMvAAAMhMvAIDMxAsAIDPxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAyEy8AgMzECwAgM/ECAMhMvAAAMhMvAIDMxAsAIDPxAgDITLwAADITLwCAzMQLACAz8QIAyGxSvHh+vJ6t5lePL/WCl+1mfvNU//Z6d7UKfq2XzO4fxu3w4WY1n23unlsrPd3OVvNZa8/d/XQ3BAA+xSXxovx1trrdF0VRFPv7+SzOB9X697dXq/ks+GmCQrTDdBZ52W7qDXtiSn0YQzkGAPg4l1Uvqkhx9fhShYM6agSPXm9f6wpEM/y/3l2t5lePL6cd1iWK+ud6+xru/6EMGX0FjDphVFsBAJ9pbLyo0kPzc7ttagadn2iyY3W77+aSbrwIs0hRFMXL82sdGspySH0APQmjLnKYIgGATzelelEN4WH1oiiKZN2iKOqKxebuOSxyBJsk48XVZj5b3e6f7q426eySOIDoMIZaNACAjzAlXpTViLHxImjFCPonyimMp268eNlu5rPN7U0ZL1pNo+3ddqJMcHg6MADgk42PF00H5ah40UymbO6ey4H//qGufyTjRbnO3baKF3U6CediNnf7x+ve+sSpe0MHBgB8qtHxIq5A3D90ujHirsxmsN/cPT/dRiWK1e2+p7WzbuFs4sXpH2fjRRRHFDAA4BONjRfBlR1lCGg1UiSqF5vrq9V8trnb1gP/zVPd7Hn2ypFqq9HxojmGvkYQAODDTIoXV5v2halF0dd78bAvw8Tm9mbTBIuo8tFq7SyK4lTemDg5Uq18/1B020gBgA824cLUenQfe+VI6y6cdX2iuUnGiHgxrnpR7bk5gDLK6MAAgE8yuvfiYf+UuK1WUYyOF+GonzNeJK5niW6YAQB8sDfetbO3rzO8diOKF9WQXzZdju29OD85Ek6LBHpu0QEAfIALbwpeFOOqF9U67QmL8dWLfbB+Ey/q/oxUI6e7bAHAZ/mQeFHNX3RH+ud2NWJCvBjKFqURX7UKAOT3AfGinOZINkx0OiTa8eKmufVndJ+ubjvn0AG7ThUAPtSkeAEAcJ54AQBkJl4AAJmJFwBAZuIFAJCZeAEAZCZeAACZiRcAQGZj48UfAIA/f/78+ZMzXvwPAPjxxAsAIDPxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAyEy8AgMzECwAgM/ECAMjs4+PF71+Lyj///jfqga7//v1nETu3yWnn8bp9y/ARzaAAAAXNSURBVAGAN/voePH71+LX7//9739lRDgN6L9/NcP7f//+s6hXGuX3r0nr960+cTcAQI9PnBwJ88XvX2HtIE4e58TbXrDB5B0BACmfGC+CakFYOKgnPkYWEv77959pNYe+DSbvCABI+7R4EcyG1HWDKlhU/xo31E+oODRtFn09H0oXAJDF58SL//79JxrNqxG+WTI2XkybRQmfTfMFALybT4gX7Wzxv04359jU8NY8oPkCAN7Th8eLaFIkvXhkanhb6aL/ypTJV6wAAEkfHC/C20ws4g7O4F4WY+dFxoeB6EYZrWtU3PcCAPJy104AIDPxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAyEy8AgMzECwAgM/ECAMhMvAAAMsscLwAA/mSMFwAAI4kXAEBm4gUAkJl4AQBkJl4AAJmJFwBAZuIFAJCZeAEAZCZeAACZiRcAQGbiBQCQmXgBAGQmXgAAmYkXAEBm4gUAkJl4AQBkJl4AAJmJFwBAZuIFAJCZeAEAZDYpXjw/Xs9W86vHl3rBy3Yzv3mqf3u9u1oFv9ZLZvcP43b4cLOazzZ3z62Vnm5nq/msteeEl+1mHh8eAPAZLokX5a+z1e2+KIqi2N/PZ3E+qNa/v71azWfBTxMUoh2ms0gVGmaDMSVcU7wAgE92WfWiihRXjy9VOKijRvDo9fa1rkA0+eD17mo1v3p8Oe2wLlHUP9fb13D/D2V0iAsYDzfBmt14UaWfM6EEAMhtbLyo0kPzc7utSheJn2iyY3W77+aSbrwIs0hRFMXL82udD8pySH0AQcIQLwDgS5pSveiZfUjVLYqirlhs7p7DIkewSTJeXG3ms9Xt/unuapPOLp34Il4AwBczJV6Uw/nYeBG0YgT9E2UgeOrGi5ftZj7b3N6U8aLVNNrebflc4gUAfEnj40XdyDkuXjSTKZu75zIH3D/UCSAZL8p17rZVvKjTSTgXs7nbP14H8yNV3DnzI14AwAcbHS/iCsT9Q6cbI+7KbFo1N3fPT7dRiWJ1u+9p7axbOJt4cfpHKl6kj9CVIwDwycbGi+DKjjIEtBopEtWLzfXVaj7b3G3rOsTNU93sefbKkWor8QIA/kKT4sXVpn1halH09V487Mswsbm92TTBIqp8tFo7i6I4lTdGTI5UK5zmPrrxonrSc/fjAgCymnBhaj26j71ypHUXzro+0dwkY0S8GKpeiBcA8EWN7r142D8lbqtVFKPjRXihh3gBAN/YG+/a2dvXGXR3xvEiukx0bO+FyREA+AtdeFPwohhXvajWae5R0bfD3urFPlhfvACAL+1D4kXvMP/cvhJkerwY8SNeAMCH+oB4UU5zpL6NrLnvVqMdL26aW39G9+kaSfUCAD7DpHgBAHCeeAEAZCZeAACZiRcAQGbiBQCQmXgBAGQmXgAAmY2NF38AAP78+fPnT8548T8A4McTLwCAzMQLACAz8QIAyEy8AAAyEy8AgMzECwAgM/ECAMhMvAAAMhMvAIDMxAsAILOPjRf//fvPIvbPv/+d2eb3r551ex8Y3ku8et9yAODNPrN68fvXYvHr99l1qlX++/efIAD8/tXEgf/+/ef8fkY87ZjDAQDO+8R48fvXtHpBmC/ibePk8eYnnnpAAEDSp8WL//79Z2KtIKguhIWGesJl7M76nnj6AQEASZ8VLyZXCoLZkHrrKlhU/zobDZo2i74eDqULAMjic+LFxNmMskIRbFAlgmbJtMqD5gsAeFefEi+mjePtbPG/Tjfn1LSi+QIA3tMnxItpYSCaFEkvnlh16LvSZOoVKABA2ofHi2mDeHhbikXcwRncQ+P87qIbbrSuOXHfCwDIy107AYDMxAsAIDPxAgDITLwAADITLwCAzMQLACAz8QIAyEy8AAAyEy8AgMzECwAgM/ECAMgsc7wAAPiTMV4AAIwkXgAAmYkXAEBm4gUAkJl4AQBkJl4AAJmJFwBAZuIFAJCZeAEAZPb/RYMztJUxpUQAAAAASUVORK5CYII=" alt="" />

-------------------------------------------

AC代码:

 import java.util.Arrays;
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int x[]=new int[3];
for(int i=0;i<x.length;i++){
x[i]=sc.nextInt();
} Arrays.sort(x); for(int i=0;i<x.length;i++){
System.out.print(x[i]+" ");
} } }

题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=41

NYOJ之三个数从小到大排序的更多相关文章

  1. nyoj 41-三个数从小到大排序(STL --> sort(a, a+n) 升序)

    41-三个数从小到大排序 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:31 submit:44 题目描述: 现在要写一个程序,实现给三个数排序的功 ...

  2. 三个数从小到大排序—南阳acm

    问题描述: 现在要写一个程序,实现给三个数排序的功能     输入        输入三个正整数    输出       给输入的三个正整数排序       样例输入 20 7 33      样例输 ...

  3. NYOJ 8 一种排序(comparator排序)

    一种排序 时间限制: 3000 ms  |  内存限制: 65535 KB 难度: 3   描述 现在有很多长方形,每一个长方形都有一个编号,这个编号可以重复:还知道这个长方形的宽和长,编号.长.宽都 ...

  4. nyoj 8 一种排序

    一种排序 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 现在有很多长方形,每一个长方形都有一个编号,这个编号可以重复:还知道这个长方形的宽和长,编号.长.宽都是整数 ...

  5. nyoj 8 一种排序(用vector,sort,不用set)

    一种排序 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 现在有很多长方形,每一个长方形都有一个编号,这个编号可以重复:还知道这个长方形的宽和长,编号.长.宽都是整数 ...

  6. C语言:将带头节点的单向链表结点域中的数据从小到大排序。-求出单向链表结点(不包括头节点)数据域中的最大值。-将M*N的二维数组中的数据,按行依次放入一维数组,

    //函数fun功能是将带头节点的单向链表结点域中的数据从小到大排序. //相当于数组的冒泡排序. #include <stdio.h> #include <stdlib.h> ...

  7. 使用po模式读取豆瓣读书最受关注的书籍,取出标题、评分、评论、题材 按评分从小到大排序并输出到txt文件中

    #coding=utf-8from time import sleepimport unittestfrom selenium import webdriverfrom selenium.webdri ...

  8. 使用page object模式抓取几个主要城市的pm2.5并从小到大排序后写入txt文档

    #coding=utf-8from time import sleepimport unittestfrom selenium import webdriverfrom selenium.webdri ...

  9. 数据结构:堆排序 (python版) 小顶堆实现从大到小排序 | 大顶堆实现从小到大排序

    #!/usr/bin/env python # -*- coding:utf-8 -*- ''' Author: Minion-Xu 小堆序实现从大到小排序,大堆序实现从小到大排序 重点的地方:小堆序 ...

随机推荐

  1. Code First01---CodeFirst项目的搭建

    Entity Framework支持Database First.Model First和Code Only三种开发模式,各模式的开发流程大相径庭,开发体验完全不一样.三种开发模式各有优缺点,对于程序 ...

  2. BZOJ1483——[HNOI2009]梦幻布丁

    1.题目大意:这题就是给你一个序列,有两个操作,一个是询问序列中的连续段数,比如序列 1 2 2 1就是三段.. 1是一段,2 2 又是一段,1又是一段,就是相同的在一起,第二个操作就是将其中的一种数 ...

  3. 小米手机无法打开程序报错Unable to instantiate application com.android.tools.fd.runtime.BootstrapApplication的解决办法

    打开studio的setting 然后 Preferences -> Build, Execution, Deployment -> Instant Run -> Enable In ...

  4. C# 游戏服务器框架

    http://www.supersocket.net/ http://blog.csdn.net/zhuweisky/article/details/9055989 http://blog.csdn. ...

  5. 如何使用coding.net

        由于我有一位十分聪明能干的室友会使用coding.net,于是我决定奉献一下室友的智慧,告诉大家如何使用conding.net上交作业.(如有说错的地方希望大家可以指出来) 首先登陆codin ...

  6. linux中tar命令用法

    把常用的tar解压命令总结下,当作备忘: tar -c: 建立压缩档案 -x:解压 -t:查看内容 -r:向压缩归档文件末尾追加文件 -u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其 ...

  7. 无法解析类型 javax.servlet.http.HttpServletRequest。从必需的 .class 文件间接引用

    java.lang.Error: 无法解析的编译问题: 无法解析类型 javax.servlet.http.HttpServletRequest.从必需的 .class 文件间接引用了它 无法解析类型 ...

  8. echart字符云之添加点击事件

    // 路径配置 require.config({ paths : { echarts : 'jquery/echarts-2.2.7/build/dist' } }); // 使用EChart.js画 ...

  9. SDL播放声音

    extern "C" { #include <libavcodec/avcodec.h> #include <libavformat/avformat.h> ...

  10. 【GoLang】GoLang struct 使用

    代码示例: package main import "fmt" type Human struct { name string age int weight int } type ...