【BZOJ】2879: [Noi2012]美食节
题意
\(m\)个厨师,\(n\)种菜,每种菜需要做\(p_i\)份,每个厨师做第\(i\)种菜用时\(t_{i, j}\)。一个厨师做完一道菜才能做下一道。每份菜的时间是这个厨师做完这道菜的用时加上之前做过的菜的用时。问做完所有的菜的最小用时是多少。($ n \le 40, m \le 100, \sum p_i \le 800, t_{i, j} \le 1000 $)
分析
可以考虑每个厨师做的每一道菜。最后做的菜对时间贡献了一次,倒数第二的菜对时间贡献了两次。于是我们考虑每个厨师倒着做的菜品即可。
题解
将每个厨师拆成\(\sum p_i\)个点,表示这个菜是倒数第\(i\)次做的。但是这样一次性把图建出来会tle。所以我们要优化。
考虑到每个厨师倒数第一个菜一定在倒数第二个菜先做,所以我们按照这个顺序来建图即可,即增广一次建一次。
具体做法是:
首先加入\(m\)个点,表示每个厨师倒数第一次做的菜。源\(S\)向这些点连边,容量\(1\),费用为\(0\)。再加入\(n\)个点,表示菜类,每个点向汇连边,容量为\(p_i\),费用为\(0\)。然后在厨师的点集中向菜类点集连边,容量为\(1\),费用为\(t_{i, j}\)。
然后增广一条路径。此时找出被增广的厨师,再新建一个点,表示这个厨师第二次做的菜。源\(S\)向这个点连边,容量为\(1\),费用为\(0\)。然后向菜类连边,容量为\(1\),费用为\(2 t_{i, j}\)。依次类推。
#include <bits/stdc++.h>
using namespace std;
const int N=45, M=105, nN=N+M+1000, nE=N*(M+800)*8, oo=0x3f3f3f3f;
int ihead[nN], cnt=1;
struct E {
int next, from, to, cap, w;
}e[nE];
void add(int x, int y, int cap, int w) {
e[++cnt]=(E){ihead[x], x, y, cap, w}; ihead[x]=cnt;
e[++cnt]=(E){ihead[y], y, x, 0, -w}; ihead[y]=cnt;
}
bool spfa(int s, int t, int n, int &ans) {
static int d[nN], q[nN], p[nN], fr, ta;
static bool vis[nN];
memset(d, 0x3f, sizeof(int)*(n+1));
fr=ta=0;
d[s]=0;
q[ta++]=s;
while(fr!=ta) {
int x=q[fr++];
fr=fr==nN?0:fr;
vis[x]=0;
for(int i=ihead[x]; i; i=e[i].next) {
if(!e[i].cap) {
continue;
}
int y=e[i].to;
if(d[y]>d[x]+e[i].w) {
d[y]=d[x]+e[i].w;
p[y]=i;
if(!vis[y]) {
vis[y]=1;
q[ta++]=y;
ta=ta==nN?0:ta;
}
}
}
}
if(d[t]==oo) {
return 0;
}
for(int x=t; x!=s; x=e[p[x]].from) e[p[x]].cap--, e[p[x]^1].cap++;
ans+=d[t];
return 1;
}
int n, m, p[N], sum, pos[M], num[M], t[N][M], nu[N];
int main() {
int ans=0;
scanf("%d%d", &n, &m);
for(int i=1; i<=n; ++i) {
scanf("%d", &p[i]);
sum+=p[i];
}
int S=n+m+sum+1, T=S+1;
for(int i=1; i<=n; ++i) {
add(S, i, p[i], 0);
for(int j=1; j<=m; ++j) {
scanf("%d", &t[i][j]);
}
}
for(int j=1; j<=m; ++j) {
int id=n+j;
add(id, T, 1, 0);
num[j]=1;
pos[j]=cnt;
for(int i=1; i<=n; ++i) {
add(i, id, 1, t[i][j]);
}
}
int tot=n+m;
while(spfa(S, T, T, ans)) {
int j=0;
for(j=1; j<=m && !e[pos[j]].cap; ++j);
++num[j];
++tot;
add(tot, T, 1, 0);
pos[j]=cnt;
for(int i=1; i<=n; ++i) {
add(i, tot, 1, num[j]*t[i][j]);
}
}
printf("%d\n", ans);
return 0;
}
【BZOJ】2879: [Noi2012]美食节的更多相关文章
- BZOJ 2879: [Noi2012]美食节
2879: [Noi2012]美食节 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1834 Solved: 969[Submit][Status] ...
- BZOJ 2879: [Noi2012]美食节 最小费用流 动态添边
2879: [Noi2012]美食节 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 324 Solved: 179[Submit][Status] ...
- BZOJ 2879: [Noi2012]美食节( 费用流 + 动态加边 )
倒着做菜..然后考虑为当前的人做菜对后面的人的影响就可以了..要动态加边 --------------------------------------------------------------- ...
- BZOJ 2879 NOI2012美食节
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2879 CZ市为了欢迎全国各地的同学,特地举办了一场盛大的美食节.作为一个喜欢尝鲜的美食客,小M ...
- BZOJ.2879.[NOI2012]美食节(费用流SPFA)
题目链接 /* 同"修车":对于每个厨师拆成p个点表示p个时间点,每个人向m个厨师每个时间点连边 这样边数O(nmp)+网络流 ≈O(nm*p^2)(假设SPFA线性) = GG ...
- BZOJ 2879 [Noi2012]美食节 | 费用流 动态开点
这道题就是"修车"的数据加强版--但是数据范围扩大了好多,应对方法是"动态开点". 首先先把"所有厨师做的倒数第一道菜"和所有菜连边,然后跑 ...
- 2879: [Noi2012]美食节 - BZOJ
Description CZ市为了欢迎全国各地的同学,特地举办了一场盛大的美食节.作为一个喜欢尝鲜的美食客,小M自然不愿意错过这场盛宴.他很快就尝遍了美食节所有的美食.然而,尝鲜的欲望是难以满足的.尽 ...
- 2879: [Noi2012]美食节
Description CZ市为了欢迎全国各地的同学,特地举办了一场盛大的美食节.作为一个喜欢尝鲜的美食客,小M自然不愿意错过这场盛宴.他很快就尝遍了美食节所有的美食.然而,尝鲜的欲望是难以满足的.尽 ...
- 2879. [NOI2012]美食节【费用流】
Description CZ市为了欢迎全国各地的同学,特地举办了一场盛大的美食节.作为一个喜欢尝鲜的美食客,小M自然不愿意错过这场盛宴.他很快就尝遍了美食节所有的美食.然而,尝鲜的欲望是难以满足的.尽 ...
随机推荐
- Android 下拉刷新
以前旧版用的是开源的PullToRefresh第三方库,该库现在已经不再维护了: chrisbanes/Android-PullToRefreshhttps://github.com/chrisban ...
- 【131031】rel 属性 -- link标签中的rel属性,定义了文档与链接的关系
此属性通常出现在a,link标签中 属性值 Alternate -- 定义交替出现的链接 Alternate 属性值 -- alternate是LinkTypes的一个值,网页设计者可以通过此值,设计 ...
- [LeetCode] Remove Duplicates from Sorted List
Given a sorted linked list, delete all duplicates such that each element appear only once. For examp ...
- 卸载Eclipse安装的插件
背景:先前安装过Java Decompiler,不知道怎么弄的eclipse出问题之后不能用了,折腾了几次都没弄好,这次准备把这个插件先卸掉再装一次,结果发现,卸也卸不掉,最终是强制删除,以下为试过的 ...
- virtualbox无法安装VBoxLinuxAdditions.run
执行 sh ./VBoxLinuxAdditions.run 命令后报错 ./VBoxLinuxAdditions.run: ./VBoxLinuxAdditions.run: Input/out ...
- 消息队列通信,王明学learn
消息队列通信 消息队列就是一个消息(一个结构)的链表.而一条消息则可看作一个记录,具有特定的格式.进程可以从中按照一定的规则添加新消息:另一些进程则可以从消息队列中读走消息. 每一个消息都是一个结构体 ...
- Mesa 3D
Mesa 3D是一个在MIT许可证下开放源代码的三维计算机图形库,以开源形式实现了OpenGL的应用程序接口. OpenGL的高效实现一般依赖于显示设备厂商提供的硬件,而Mesa 3D是一个纯基于软件 ...
- 如何在Salesforce中进行代码开发
两种方式: 1):用Salesforce自带的在线开发模式 Setup --> App Setup --> Develop --> than you can select 'Page ...
- 【java IO File】统计项目代码总共多少行
统计项目代码总共有多少行 思想: 1.首先将不需要迭代的文件夹,保存在集合中,不满足的就是需要迭代的文件夹 2.将需要进行统计行数的代码文件保存在集合中,满足的就是需要计算文件行数的文件 3.迭代方法 ...
- Android Fragment学习笔记(二)----Fragment界面添加和管理
Fragment界面添加 了解过fragment的生命周期等简单知识,于是去看官方文档来了解更多相关内容,要添加fragment到我们的UI界面中,给出了两种常用的方法,第一个是在activity的布 ...