BZOJ3759: Hungergame 博弈论+线性基
学了新的忘了旧的,还活着干什么
题意:一些盒子,每步可选择打开盒子和取出已打开盒子的任意多石子,问先手是否必胜
搬运po姐的题解:
先手必胜的状态为:给出的数字集合存在一个异或和为零的非空子集,则先手必胜
证明:
首先我们有状态A:当前的所有打开的箱子中的石子数异或和为零,且所有关闭的箱子中的石子数的集合中不存在一个异或和为零的非空子集
易证A状态时先手必败
先手有两种操作:
1.从一个打开的箱子中拿走一些石子 那么根据Nim的结论 后手可以同样拿走一些石子使状态恢复为A状态
2.打开一些箱子 由于未打开的箱子中不存在一个异或和为零的非空子集 所以打开后所有打开的箱子中石子数异或和必不为零 于是后手可以拿走一些石子使状态恢复为A状态
故此时先手必败
那么如果初始不存在一个异或和为零的非空子集,那么初始状态满足状态A,先手必败
如果初始存在一个异或和为零的非空子集,那么先手一定可以打开所有的异或和为零的子集,使剩余箱子不存在异或和为零的非空子集,将状态A留给后手,先手必胜
然后就是判断是否有子集异或为0,线性基求一下。
update:其实当n>32时可以直接判断先手胜,因为int范围考虑每一个二进制位一定会有异或为0的
#include<bits/stdc++.h>
using namespace std;
#define N 35
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,a[N],b[N];
bool gauss(){
memset(b,,sizeof(b));
for(int i=;i<=n;i++){
for(int j=;j>=;j--)
if(a[i]>>j&){
if(!b[j]){b[j]=a[i];break;}
else a[i]^=b[j];
}
if(!a[i])return ;
}
return ;
}
int main(){
int T=read();
while(T--){
n=read();
for(int i=;i<=n;i++)a[i]=read();
puts(gauss()?"Yes":"No");
}
return ;
}
3759: Hungergame
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 182 Solved: 131
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
5
18 11 16 19 15
5
18 12 17 10 18
5
17 7 1 10 1
5
19 5 16 19 8
5
18 18 7 4 9
Sample Output
Yes
Yes
Yes
Yes
HINT
BZOJ3759: Hungergame 博弈论+线性基的更多相关文章
- darkbzoj #3759. Hungergame 博弈论 线性基 NIM
LINK:Hungergame 放上一道简单题 复习一下. 考虑每次可以打开任意多个盒子 如果全打开了 那么就是一个NIM游戏了. 如果发现局面是异或为0的时候此时先手必胜了. 考虑局面不全体异或为0 ...
- bzoj 3759 Hungergame 博弈论+线性基
和nim游戏类似 易证必败状态为:当前打开的箱子中石子异或和为0,没打开的箱子中不存在一个子集满足异或和为0 因为先手无论是取石子还是开箱子,后手都可以通过取石子来使状态变回原状态 所以只需判定是否有 ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
- Nowcoder Playing Games ( FWT 优化 DP && 博弈论 && 线性基)
题目链接 题意 : 给出 N 个数.然后问你最多取出多少石子使得在 NIM 博弈中.后手必胜 分析 : Nim 博弈模型,后手必胜当且仅当各个堆的石子的数目的异或和为 0 转化一下.变成最少取多少石 ...
- 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论
正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...
- 【BZOJ1299】巧克力棒(博弈论,线性基)
[BZOJ1299]巧克力棒(博弈论,线性基) 题面 BZOJ 题解 \(Nim\)博弈的变形形式. 显然,如果我们不考虑拿巧克力棒出来的话,这就是一个裸的\(Nim\)博弈. 但是现在可以加入巧克力 ...
- BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论
BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...
- BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)
题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...
- [BZOJ1299]巧克力棒(博弈论,线性基)
[BZOJ1299]巧克力棒 Description TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度.TBL先手两人轮流,无法操作的人输. ...
随机推荐
- 【PHP的异常处理【完整】】
PHP的异常处理机制大多数和java的很相似,但是没有finally,而且还可以自定义顶级异常处理器:捕捉到异常信息后,会跳出try-catch块,如果catch中没有跳转的动作,则会继续执行下一条语 ...
- AngularJS讲义 - 作用域
什么是作用域? Angular中作用域(scope)是模板以及工作的上下文环境,作用域中存放了应用模型和视图相关的回调行为.作用域是层次化结构的与相关联的DOM结构相对应.作用域可以观察表达式以及传播 ...
- c++ 左值右值 函数模板
1.先看一段代码,这就是一种函数模板的用法,但是红色的部分如果把a写成a++或者写成一个常量比如1,都是编译不过的,因为如果是a++的话,实际上首先是取得a的 值0,而0作为一个常量没有地址.写成1也 ...
- PostgreSQL的时间/日期函数使用
PostgreSQL的常用时间函数使用整理如下: 一.获取系统时间函数 1.1 获取当前完整时间 select now(); david=# select now(); now ----------- ...
- hdu 4278 2012天津赛区网络赛 数学 *
8进制转为10进制 #include<cstdio> #include<iostream> #include<algorithm> #include<cstr ...
- Java Security: Illegal key size or default parameters?
来自:http://stackoverflow.com/questions/6481627/java-security-illegal-key-size-or-default-parameters I ...
- 虚拟机安卓APK
输入命令,可以直接把桌面上的程序直接拖过来. 注意第二条命令,有"-r".
- 【转】【技术博客】Spark性能优化指南——高级篇
http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236e ...
- LoadRunner编程之跳出迭代
LoadRunner编程之跳出迭代 51Testing软件测试网3p6pK.Yo LoadRunner中 提供了函数exit(-1)来结束迭代. 使用return 0 来结束本次迭代,进入下一次迭代. ...
- js:方法2. 字符串
String.charAt()/String.charCodeAt() string.charAt(n); n:The index of the character that should be re ...