HierarchicalClustering:编写HierarchicalClustering层次聚类算法—Jason niu
from numpy import * class cluster_node:
def __init__(self,vec,left=None,right=None,distance=0.0,id=None,count=1):
self.left=left
self.right=right
self.vec=vec
self.id=id
self.distance=distance
self.count=count def L2dist(v1,v2):
return sqrt(sum((v1-v2)**2)) def L1dist(v1,v2):
return sum(abs(v1-v2)) def hcluster(features,distance=L2dist):
distances={}
currentclustid=-1
clust=[cluster_node(array(features[i]),id=i) for i in range(len(features))] while len(clust)>1:
lowestpair=(0,1)
closest=distance(clust[0].vec,clust[1].vec) for i in range(len(clust)):
for j in range(i+1,len(clust)):
if (clust[i].id,clust[j].id) not in distances:
distances[(clust[i].id,clust[j].id)]=distance(clust[i].vec,clust[j].vec) d=distances[(clust[i].id,clust[j].id)] if d<closest:
closest=d
lowestpair=(i,j) mergevec=[(clust[lowestpair[0]].vec[i]+clust[lowestpair[1]].vec[i])/2.0 \
for i in range(len(clust[0].vec))] newcluster=cluster_node(array(mergevec),left=clust[lowestpair[0]],
right=clust[lowestpair[1]],
distance=closest,id=currentclustid) currentclustid-=1
del clust[lowestpair[1]]
del clust[lowestpair[0]]
clust.append(newcluster) return clust[0] def extract_clusters(clust,dist):
clusters = {}
if clust.distance<dist:
return [clust]
else:
cl = []
cr = []
if clust.left!=None:
cl = extract_clusters(clust.left,dist=dist)
if clust.right!=None:
cr = extract_clusters(clust.right,dist=dist)
return cl+cr def get_cluster_elements(clust):
if clust.id>=0:
return [clust.id]
else:
cl = []
cr = []
if clust.left!=None:
cl = get_cluster_elements(clust.left)
if clust.right!=None:
cr = get_cluster_elements(clust.right)
return cl+cr def printclust(clust,labels=None,n=0):
for i in range(n): print (' '),
if clust.id<0:
print ('-')
else:
if labels==None: print (clust.id)
else: print (labels[clust.id])
if clust.left!=None: printclust(clust.left,labels=labels,n=n+1)
if clust.right!=None: printclust(clust.right,labels=labels,n=n+1) def getheight(clust):
if clust.left==None and clust.right==None: return 1
return getheight(clust.left)+getheight(clust.right) def getdepth(clust):
if clust.left==None and clust.right==None: return
return max(getdepth(clust.left),getdepth(clust.right))+clust.distance
HierarchicalClustering:编写HierarchicalClustering层次聚类算法—Jason niu的更多相关文章
- Python爬虫技术(从网页获取图片)+HierarchicalClustering层次聚类算法,实现自动从网页获取图片然后根据图片色调自动分类—Jason niu
网上教程太啰嗦,本人最讨厌一大堆没用的废话,直接上,就是干! 网络爬虫?非监督学习? 只有两步,只有两个步骤? Are you kidding me? Are you ok? 来吧,follow me ...
- Hierarchical clustering:利用层次聚类算法来把100张图片自动分成红绿蓝三种色调—Jaosn niu
#!/usr/bin/python # coding:utf-8 from PIL import Image, ImageDraw from HierarchicalClustering import ...
- 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...
- 【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN
层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 ...
- 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...
- ROCK 聚类算法
ROCK (RObust Clustering using linKs) 聚类算法是一种鲁棒的用于分类属性的聚类算法.该算法属于凝聚型的层次聚类算法.之所以鲁棒是因为在确认两对象(样本点/簇)之间 ...
- Mahout机器学习平台之聚类算法具体剖析(含实例分析)
第一部分: 学习Mahout必需要知道的资料查找技能: 学会查官方帮助文档: 解压用于安装文件(mahout-distribution-0.6.tar.gz),找到例如以下位置.我将该文件解压到win ...
- ML: 聚类算法-概论
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗.动物植物.目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别.数据分析.图像处理.市场研 ...
- 聚类:层次聚类、基于划分的聚类(k-means)、基于密度的聚类、基于模型的聚类
一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一 ...
随机推荐
- ios中input获取焦点时的问题
1.获取焦点时,input会变大 解决办法是:font-size设置为32px以上 还有就是要在header里面加这一行代码:<meta name="viewport" co ...
- swift 学习- 24 -- 协议 01
// 协议 定义了一个蓝图, 规定了用来实现某一特定任务或者功能的方法, 属性, 以及其他需要的东西. // 类, 结构体, 或 枚举都可以遵循协议, 并且为协议定义的这些要求 提供具体的实现, 某个 ...
- Confluence 6 PostgreSQL 测试你的数据库连接
在你的数据库设置界面,有一个 测试连接(Test connection)按钮可以检查: Confluence 可以连接你的数据库服务器 数据库字符集的编码是否设置正确 你的数据库用户是否有正确的权限可 ...
- Confluence 6 配置避免管理员联系表单垃圾
你可以配置 Confluence 使用验证码(Captcha)来避免垃圾内容发送给 Confluence 管理员.有关管理员联系表单验证码的内容在全站验证码设置中进行配置,相关的文档请参考 Confi ...
- leetcode(js)算法之17电话号码的字母组合
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合. 给出数字到字母的映射如下(与电话按键相同).注意 1 不对应任何字母 示例: 输入:"23" 输出:[" ...
- 【python】gearman阻塞非阻塞,同步/异步,状态
参考: http://pythonhosted.org/gearman/client.html?highlight=submit_multiple_jobs#gearman.client.Gearma ...
- hdu3949 异或空间 + 求矩阵的主元
给定n个整数,将数分解成01序列,由这n个01序列构成矩阵,这n个数构成线性空间,这就是异或空间 将这个矩阵高斯消元,求出t个主元,那么由着t个主元构成的线性空间里总共有2^t个数 设这t个数分别是a ...
- spfa+01 规划
尼玛的哪里错了.. /* 在有向图上找一个环,使结点权值和/边权和的比例值最大 01规划,设比例为l,那么将每条边的权值改成a[u]-l*w,如果有正权环,则比例l可行 如何判图中存在正权环?将 权值 ...
- bzoj 2721
题解:首先推一发式子(见csdn https://blog.csdn.net/lleozhang/article/details/83415995) 因为x是整数,所以x的数量显然为能使取得整数的t的 ...
- stylus入门教程,在webstorm中配置stylus
转载:https://www.cnblogs.com/wenqiangit/p/9717715.html#undefined stylus特点 富于表现力.具有健壮性.功能丰富.动态编码 不需要写 ...