BZOJ-3-1010: [HNOI2008]玩具装箱toy-斜率优化DP
dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j-1-L)^2) (j<i) 令f[i]=sum[i]+i,c=1+l 则dp[i]=min(dp[j]+(f[i]-f[j]-c)^2) 1.证明决策单调性 假设在状态i处的k决策优与j决策,即 dp[k]+(f[i]-f[k]-c)^2<=dp[j]+(f[i]-f[j]-c)^2 则对于i后的所有状态t,要证明决策单调性 即dp[k]+(f[t]-f[k]-c)^2<=dp[j]+(f[t]-f[j]-c)^2 只要证 dp[k]+(f[i]+v-f[k]-c)^2<=dp[j]+(f[i]+v-f[j]-c)^2 只要证 dp[k]+(f[i]-f[k]-c)^2+2*v*(f[i]-f[k]-c)+v^2<=dp[j]+(f[i]-f[j]-c)^2+2*v*(f[i]-f[j]-c)+v^2 只要证 2*v*(f[i]-f[k]-c)<=2*v*(f[i]-f[j]-c) 即f[k]>=f[j](显然) 证明完毕 2.求斜率方程 因为dp[k]+(f[i]-f[k]-c)^2<=dp[j]+(f[i]-f[j]-c)^2 展开 dp[k]+f[i]^2-2*f[i]*(f[k]+c)+(f[k]+c)^2<=dp[j]+f[i]^2-2*f[i]*(f[j]+c)+(f[j]+c)^2 即 dp[k]-2*f[i]*(f[k]+c)+(f[k]+c)^2<=dp[j]-2*f[i]*(f[j]+c)+(f[j]+c)^2 即(dp[k]+(f[k]+c)^2-dp[j]-(f[j]+c)^2)/2*(f[k]-f[j])<=f[i] f[i]是单调递增的,我们使用队列维护一个下凸壳,每次取出队头作为决策 加入决策i时,令队尾为q[r],前一个为q[r-1] 满足斜率(q[r],i)<斜率(q[r-1],q[r])时,显然队尾是无效的,将其弹出
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 56789
ll n,l,s[maxn],dp[maxn];
int head,tail,q[maxn];
double slove(int k,int j)
{
return (dp[k]-dp[j]+(s[k]+l)*(s[k]+l)-(s[j]+l)*(s[j]+l))/(2.0*(s[k]-s[j]));
}
int main()
{
scanf("%lld%lld",&n,&l);
for(int i=1; i<=n; i++)
{
scanf("%lld",&s[i]);
s[i]+=s[i-1];
}
for(int i=1; i<=n; i++)s[i]+=i;
l++;
for(int i=1; i<=n; i++)
{
while(head<tail&&slove(q[head+1],q[head])<=s[i])
head++;
dp[i]=dp[q[head]]+(s[i]-s[q[head]]-l)*(s[i]-s[q[head]]-l);
while(head<tail&&slove(i,q[tail])<slove(q[tail],q[tail-1]))
tail--;
q[++tail]=i;
}
printf("%lld\n",dp[n]);
return 0;
}
BZOJ-3-1010: [HNOI2008]玩具装箱toy-斜率优化DP的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- BZOJ 1010: 玩具装箱toy (斜率优化dp)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告
题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...
- 『玩具装箱TOY 斜率优化DP』
玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...
随机推荐
- JPA核心类与使用
点击访问:JPA环境配置(一) Persistence: Persistence用于获取EntityManagerFactory实例,这个类中包含一个名为createEntityManagerFact ...
- SpringMVC环境搭建
Spring MVC为展现层提供的基于MVC设计理念的优秀Web框架,是目前最主流的MVC框架之一. Spring 3.0之后完全超越Struts2,称为最优秀的MVC框架.学完SpringMVC之后 ...
- ignitius and princess 2(全排列)
A - Ignatius and the Princess II Now our hero finds the door to the BEelzebub feng5166. He opens the ...
- Python基础之re模块(正则表达式)
就其本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言,(在Python中)它内嵌在Python中, 并通过 re 模块实现.正则表达式模式被编译成一系列的字节码,然后由用 C 编写的 ...
- php 统计某个目录中所有文件的大小
/** * @Purpose : 利用递归的方式统计目录的大小 * @Author : chrdai * @Method Name : dirSize() * @parameter : string ...
- vue 在.vue文件里监听路由
监听路由 watch $route vue项目中的App.vue 文件 <template> <div id="app"> <!--includ ...
- 沈阳润才教育CRM
一.CRM初始 CRM,客户关系管理系统(Customer Relationship Management).企业用CRM技术来管理与客户之间的关系,以求提升企业成功的管理方式,其目的是协助企业管理销 ...
- K8s-Pod控制器
在K8s-Pod文档中我们创建的Pod是非托管的Pod,因为Pod被设计为用后就弃的对象,如果Pod正常关闭,K8s会将该Pod清除,它没有自愈的能力.Pod控制器是用来保持Pod状态的一种对象资 ...
- 饮冰三年-人工智能-Python-17Python基础之模块与包
一.模块(modue) 简单理解一个.py文件就称之为一个模块. 1.1 模块种类: python标准库 第三方模板 应用程序自定义模块(尽量不要与内置函数重名) 1.2 模块导入方法 # impor ...
- 无废话-API-01
说明 我的开发环境:VS2013 浏览器:谷歌浏览器(Google Chrome) 1创建项目 1.1添加一个 应用程序"ASP.NET MVC 4 Web 应用程序" 1.2选 ...