一般来说,如果允许缓存可以稍微的跟数据库偶尔有不一致的情况,也就是说如果你的系统不是严格要求 “缓存+数据库” 必须保持一致性的话,最好不要做这个方案,即:读请求和写请求串行化,串到一个内存队列里去。

串行化可以保证一定不会出现不一致的情况,但是它也会导致系统的吞吐量大幅度降低,用比正常情况下多几倍的机器去支撑线上的一个请求。

Cache Aside Pattern

最经典的缓存+数据库读写的模式,就是 Cache Aside Pattern。

  • 读的时候,先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。
  • 更新的时候,先更新数据库,然后再删除缓存

为什么是删除缓存,而不是更新缓存?

原因很简单,很多时候,在复杂点的缓存场景,缓存不单单是数据库中直接取出来的值。

比如可能更新了某个表的一个字段,然后其对应的缓存,是需要查询另外两个表的数据并进行运算,才能计算出缓存最新的值的。

另外更新缓存的代价有时候是很高的。是不是说,每次修改数据库的时候,都一定要将其对应的缓存更新一份?也许有的场景是这样,但是对于比较复杂的缓存数据计算的场景,就不是这样了。如果你频繁修改一个缓存涉及的多个表,缓存也频繁更新。但是问题在于,这个缓存到底会不会被频繁访问到?

举个栗子,一个缓存涉及的表的字段,在 1 分钟内就修改了 20 次,或者是 100 次,那么缓存更新 20 次、100 次;但是这个缓存在 1 分钟内只被读取了 1 次,有大量的冷数据。实际上,如果你只是删除缓存的话,那么在 1 分钟内,这个缓存不过就重新计算一次而已,开销大幅度降低。用到缓存才去算缓存。

其实删除缓存,而不是更新缓存,就是一个 lazy 计算的思想,不要每次都重新做复杂的计算,不管它会不会用到,而是让它到需要被使用的时候再重新计算。像 mybatis,hibernate,都有懒加载思想。查询一个部门,部门带了一个员工的 list,没有必要说每次查询部门,都里面的 1000 个员工的数据也同时查出来啊。80% 的情况,查这个部门,就只是要访问这个部门的信息就可以了。先查部门,同时要访问里面的员工,那么这个时候只有在你要访问里面的员工的时候,才会去数据库里面查询 1000 个员工。

最初级的缓存不一致问题及解决方案

问题:先更新数据库,再删除缓存。如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,数据就出现了不一致。

解决思路:先删除缓存,再更新数据库。如果数据库更新失败了,那么数据库中是旧数据,缓存中是空的,那么数据不会不一致。因为读的时候缓存没有,所以去读了数据库中的旧数据,然后更新到缓存中。

比较复杂的数据不一致问题分析

数据发生了变更,先删除了缓存,然后要去修改数据库,此时还没修改。一个请求过来,去读缓存,发现缓存空了,去查询数据库,查到了修改前的旧数据,放到了缓存中。随后数据变更的程序完成了数据库的修改。完了,数据库和缓存中的数据不一样了...

为什么上亿流量高并发场景下,缓存会出现这个问题?

只有在对一个数据在并发的进行读写的时候,才可能会出现这种问题。其实如果说你的并发量很低的话,特别是读并发很低,每天访问量就 1 万次,那么很少的情况下,会出现刚才描述的那种不一致的场景。但是问题是,如果每天的是上亿的流量,每秒并发读是几万,每秒只要有数据更新的请求,就可能会出现上述的数据库+缓存不一致的情况

解决方案如下:

更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。

一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。这样的话,一个数据变更的操作,先删除缓存,然后再去更新数据库,但是还没完成更新。此时如果一个读请求过来,没有读到缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成。

这里有一个优化点,一个队列中,其实多个更新缓存请求串在一起是没意义的,因此可以做过滤,如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可。

待那个队列对应的工作线程完成了上一个操作的数据库的修改之后,才会去执行下一个操作,也就是缓存更新的操作,此时会从数据库中读取最新的值,然后写入缓存中。

如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回;如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值。

高并发的场景下,该解决方案要注意的问题:

  • 读请求长时阻塞

由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回。

该解决方案,最大的风险点在于说,可能数据更新很频繁,导致队列中积压了大量更新操作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库。务必通过一些模拟真实的测试,看看更新数据的频率是怎样的。

另外一点,因为一个队列中,可能会积压针对多个数据项的更新操作,因此需要根据自己的业务情况进行测试,可能需要部署多个服务,每个服务分摊一些数据的更新操作。如果一个内存队列里居然会挤压 100 个商品的库存修改操作,每隔库存修改操作要耗费 10ms 去完成,那么最后一个商品的读请求,可能等待 10 * 100 = 1000ms = 1s 后,才能得到数据,这个时候就导致读请求的长时阻塞

一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会 hang 多少时间,如果读请求在 200ms 返回,如果你计算过后,哪怕是最繁忙的时候,积压 10 个更新操作,最多等待 200ms,那还可以的。

如果一个内存队列中可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少。

其实根据之前的项目经验,一般来说,数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的。像这种针对读高并发、读缓存架构的项目,一般来说写请求是非常少的,每秒的 QPS 能到几百就不错了。

我们来实际粗略测算一下

如果一秒有 500 的写操作,如果分成 5 个时间片,每 200ms 就 100 个写操作,放到 20 个内存队列中,每个内存队列,可能就积压 5 个写操作。每个写操作性能测试后,一般是在 20ms 左右就完成,那么针对每个内存队列的数据的读请求,也就最多 hang 一会儿,200ms 以内肯定能返回了。

经过刚才简单的测算,我们知道,单机支撑的写 QPS 在几百是没问题的,如果写 QPS 扩大了 10 倍,那么就扩容机器,扩容 10 倍的机器,每个机器 20 个队列。

  • 读请求并发量过高

这里还必须做好压力测试,确保恰巧碰上上述情况的时候,还有一个风险,就是突然间大量读请求会在几十毫秒的延时 hang 在服务上,看服务能不能扛的住,需要多少机器才能扛住最大的极限情况的峰值。

但是因为并不是所有的数据都在同一时间更新,缓存也不会同一时间失效,所以每次可能也就是少数数据的缓存失效了,然后那些数据对应的读请求过来,并发量应该也不会特别大。

  • 多服务实例部署的请求路由

可能这个服务部署了多个实例,那么必须保证说,执行数据更新操作,以及执行缓存更新操作的请求,都通过 Nginx 服务器路由到相同的服务实例上

比如说,对同一个商品的读写请求,全部路由到同一台机器上。可以自己去做服务间的按照某个请求参数的 hash 路由,也可以用 Nginx 的 hash 路由功能等等。

  • 热点商品的路由问题,导致请求的倾斜

万一某个商品的读写请求特别高,全部打到相同的机器的相同的队列里面去了,可能会造成某台机器的压力过大。就是说,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以其实要根据业务系统去看,如果更新频率不是太高的话,这个问题的影响并不是特别大,但是的确可能某些机器的负载会高一些。

redis缓存与数据库一致性问题的更多相关文章

  1. Redis缓存和数据库一致性问题

    工作中,经常会遇到缓存和数据库数据一致性问题.从理论上设置过期时间,是保证最终一致性的解决方案.这种方案下,我们可以对存入缓存的数据设置过期时间,所有的写操作以数据库为准,对缓存操作只是尽最大努力即可 ...

  2. Redis缓存与数据库一致性解决方案

    背景 缓存是数据库的副本,应用在查询数据时,先从缓存中查询,如果命中直接返回,如果未命中,去数据库查询最新数据并返回,同时写入缓存. 缓存能够有效地加速应用的读写速度,同时也可以降低后端负载.是应用架 ...

  3. 缓存与数据库一致性之二:高并发下的key重建(先淘汰cache再写db)的问题

    一.为什么数据会不一致 回顾一下上一篇文章<缓存与数据库一致性之一:缓存更新设计>中对缓存.数据库进行读写操作的流程. 写流程: (1)先淘汰cache (2)再写db 读流程: (1)先 ...

  4. Redis怎么保持缓存与数据库一致性?

    将不一致分为三种情况: 1. 数据库有数据,缓存没有数据: 2. 数据库有数据,缓存也有数据,数据不相等: 3. 数据库没有数据,缓存有数据. 在讨论这三种情况之前,先说明一下我使用缓存的策略,也是大 ...

  5. Redis缓存如何保证一致性

    为什么使用Redis做缓存 MySQL缺点 单机连接数目有限 对数据进行写速度慢 Redis优点 内存操作数据速度快 IO复用,速度快 单线程模型,避免线程切换带来的开销,速度快 一致性问题 读数据的 ...

  6. 本地缓存,Redis缓存,数据库DB查询(结合代码分析)

    问题背景 为什么要使用缓存?本地缓存/Redis缓存/数据库查询优先级? 一.为什么要使用缓存 原因:CPU的速度远远高于磁盘IO的速度问题:很多信息存在数据库当中的,每次查询数据库就是一次IO操作所 ...

  7. 用泛型写Redis缓存与数据库操作工具类

    功能描述: 先从缓存获取数据,如果缓存没有,就从数据库获取数据,并设置到缓存中,返回数据. 如果数据库中没有数据,需要设置一个缓存标记flagKey,防止暴击访问数据库,用缓存保护数据库. 当删除缓存 ...

  8. 注解与AOP切面编程实现redis缓存与数据库查询的解耦

    一般缓存与数据库的配合使用是这样的. 1.查询缓存中是否有数据. 2.缓存中无数据,查询数据库. 3.把数据库数据插入到缓存中. 其实我们发现 1,3 都是固定的套路,只有2 是真正的业务代码.我们可 ...

  9. 结合场景使用Redis缓存与数据库同步

    Redis缓存与MySQL数据库与同步 什么场景用到了Redis缓存? 1.广告数据 2.搜索时,分类品牌名称,分类名称和规格数据 3.购物车 4.支付 问题:如何实现? 1.广告数据 先查询Redi ...

随机推荐

  1. [UE4]线性插值Lerp

  2. python32模拟鼠标和键盘操作

    前言Windows pywin32允许你像vc一样的形式来使用python开发win32应用.代码风格可以类似win32 sdk,也可以类似MFC,由你选择.如果你仍不放弃vc一样的代码过程在pyth ...

  3. Spark RDD 操作

    1. Spark RDD 创建操作 1.1 数据集合   parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism ...

  4. Verilog风格

    Verilog HDL编写原则: 可移植性强(多用宏定义:少用嵌入代码中的常数,即Magic Number:使用头文件): 必要的注释,代码易读: 模块间耦合尽可能低: 变量名与宏的命名规则: 变量名 ...

  5. Nginx——基本操作

    1.获得root用户权限 如果鉴定失败多试几次 一. gcc 安装安装 nginx 需要先将官网下载的源码进行编译,编译依赖 gcc 环境,如果没有 gcc 环境,则需要安装: yum install ...

  6. python对mysql进行简单操作

    python 连接MySQL数据库,进行简单操作 一.连接MySQL数据库,关闭连接 import pymysql db = pymysql.connect(host="xxx.xxx.x. ...

  7. 优于 swagger 的 java markdown 文档自动生成框架-01-入门使用

    设计初衷 节约时间 Java 文档一直是一个大问题. 很多项目不写文档,即使写文档,对于开发人员来说也是非常痛苦的. 不写文档的缺点自不用多少,手动写文档的缺点也显而易见: 非常浪费时间,而且会出错. ...

  8. java 日志脱敏框架 sensitive,优雅的打印脱敏日志

    问题 为了保证用户的信息安全,敏感信息需要脱敏. 项目开发过程中,每次处理敏感信息的日志问题感觉很麻烦,大部分都是用工具类单独处理,不利于以后统一管理,很不优雅. 于是,就写了一个基于 java 注解 ...

  9. jQuery人民币转大写,C#人命币转大写

    jQuery人民币转大写 function convertCurrency(money) { //汉字的数字 var cnNums = new Array('零', '壹', '贰', '叁', '肆 ...

  10. 列举spark所有算子

    一.RDD概述      1.什么是RDD           RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可 ...