Evacuation Plan
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4617   Accepted: 1218   Special Judge

Description

The City has a number of municipal buildings and a number of fallout shelters that were build specially to hide municipal workers in case of a nuclear war. Each fallout shelter has a limited capacity in terms of a number of people it can accommodate, and there's almost no excess capacity in The City's fallout shelters. Ideally, all workers from a given municipal building shall run to the nearest fallout shelter. However, this will lead to overcrowding of some fallout shelters, while others will be half-empty at the same time.

To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings' management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.

The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker's municipal building to the fallout shelter assigned to this worker.

The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council's incompetence.

During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.

Input

The input consists of The City description and the evacuation plan description. The first line of the input file consists of two numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City (all fallout shelters are numbered from 1 to M).

The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.

The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.

The description of The City Council's evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.

The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.

Output

If The City Council's plan is optimal, then write to the output the single word OPTIMAL. Otherwise, write the word SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the input file. Your plan need not be optimal itself, but must be valid and better than The City Council's one.

Sample Input

3 4
-3 3 5
-2 -2 6
2 2 5
-1 1 3
1 1 4
-2 -2 7
0 -1 3
3 1 1 0
0 0 6 0
0 3 0 2

Sample Output

SUBOPTIMAL
3 0 1 1
0 0 6 0
0 4 0 1

Source

费用流消圈算法。

根据已有的残量矩阵建图,由于残量可以直接从图上读到,所以不需要在边里存容量。

SPFA判断是否有负环,有则处理。

有点没看懂,姑且抄份代码慢慢研究

 #include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<queue>
#define LL long long
using namespace std;
const int INF=1e9;
const int mxn=*;
inline int read(){
int sum=,flag=;char ch=getchar();
while(ch!='-'&&(ch>''||ch<''))ch=getchar();
if(ch=='-'){flag=-;ch=getchar();}
while(ch<=''&&ch>=''){sum=sum*+ch-'';ch=getchar();}
return sum*flag;
}
struct edge{
int u,v,nxt,w;
}e[mxn*mxn*];
int hd[mxn],mct=;
void add_edge(int u,int v,int w){
// printf("add:%d to %d :%d\n",u,v,w);
e[++mct].u=u;e[mct].v=v;e[mct].nxt=hd[u];e[mct].w=w;hd[u]=mct;return;
}
int n,m,S,T;
int mp[mxn][mxn];
int dis[mxn];
int pre[mxn];
int cnt[mxn];
bool inq[mxn];
bool SPFA(){
memset(dis,0x3f,sizeof dis);
memset(inq,,sizeof inq);
memset(cnt,,sizeof cnt);
queue<int>q;
q.push(T);
dis[T]=;inq[T]=;pre[T]=;cnt[T]++;
bool flag=;
int v;
while(!q.empty() && flag){
int u=q.front();q.pop();inq[u]=;
for(int i=hd[u];i;i=e[i].nxt){
v=e[i].v;
if(dis[v]>dis[u]+e[i].w){
dis[v]=dis[u]+e[i].w;
pre[v]=u;
if(!inq[v]){
q.push(v);
inq[v]=; cnt[v]++;
if(cnt[v]>=n+m+){
flag=;
break;
}
}
}
}
}
if(flag)printf("OPTIMAL\n");
else{
printf("SUBOPTIMAL\n");
memset(inq,,sizeof inq);
int s=v;
while(){
if(!inq[s])inq[s]=,s=pre[s];
else break;
}
memset(inq,,sizeof inq);
while(!inq[s]){
inq[s]=;
int p=pre[s];
if(p>n && s!=T) mp[s][p]--;
else if(s>n && p!=T) mp[p][s]++;
s=pre[s];
}
int ed=n+m;
for(int i=;i<=n;i++){//输出可行解
for(int j=n+;j<=ed;j++){
if(j!=n+)printf(" ");
printf("%d",mp[i][j]);
}
printf("\n");
}
}
return ;
}
int x[mxn],y[mxn],w[mxn],in[mxn];
void Build(){
memset(hd,,sizeof hd);
memset(in,,sizeof in);
mct=;
int i,j;
for(i=;i<=n;i++)
for(j=n+;j<=n+m;j++){
int v=abs(x[i]-x[j])+abs(y[i]-y[j])+;//代价
// printf("%d ",v);
add_edge(i,j,v);
if(mp[i][j])add_edge(j,i,-v);
in[j]+=mp[i][j];
}
// printf("\n");
for(i=n+;i<=n+m;i++){
if(in[i]) add_edge(T,i,);
if(in[i]<w[i])add_edge(i,T,);
}
return;
}
int main(){
int i,j;
while(scanf("%d%d",&n,&m)!=EOF){
int ed=n+m;T=;
for(i=;i<=ed;i++){
x[i]=read();y[i]=read();w[i]=read();
}
for(i=;i<=n;i++)
for(j=n+;j<=ed;j++)
mp[i][j]=read();
Build();
SPFA();
}
return ;
}

POJ2175 Evacuation Plan的更多相关文章

  1. POJ-2175 Evacuation Plan 最小费用流、负环判定

    题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个 ...

  2. POJ2175:Evacuation Plan(消负圈)

    Evacuation Plan Time Limit: 1000MSMemory Limit: 65536KTotal Submissions: 5665Accepted: 1481Special J ...

  3. HDU 3757 Evacuation Plan DP

    跟 UVa 1474 - Evacuation Plan 一个题,但是在杭电上能交过,在UVa上交不过……不知道哪里有问题…… 将施工队位置和避难所位置排序. dp[i][j] 代表前 i 个避难所收 ...

  4. Codeforces Gym 100002 E "Evacuation Plan" 费用流

    "Evacuation Plan" Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...

  5. POJ 2175 Evacuation Plan (费用流,负环,消圈法,SPFA)

    http://poj.org/problem?id=2175 Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  6. POJ 2175 Evacuation Plan

    Evacuation Plan Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Origina ...

  7. POJ 2175 Evacuation Plan 费用流 负圈定理

    题目给了一个满足最大流的残量网络,判断是否费用最小. 如果残量网络中存在费用负圈,那么不是最优,在这个圈上增广,增广1的流量就行了. 1.SPFA中某个点入队超过n次,说明存在负环,但是这个点不一定在 ...

  8. POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]

    ---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...

  9. UVA 1474 Evacuation Plan

    题意:有一条公路,上面有n个施工队,要躲进m个避难所中,每个避难所中至少有一个施工队,躲进避难所的花费为施工队与避难所的坐标差的绝对值,求最小花费及策略. 解法:将施工队和避难所按坐标排序,可以看出有 ...

随机推荐

  1. 今天思考一个问题,PHP const和static的区别

    static关键字在类中是,描述一个成员是静态的,static能够限制外部的访问,因为static后的成员是属于类的,是不属于任何对象实例,其他类是无法访问的,只对类的实例共享,能一定程序对该成员尽心 ...

  2. Regular Express正则表达式基础

    一. 创建一个正则表达式RegExp,有两种方式如下图所示 二. 创建一个正则表达式RegExp详述说明 1.构造函数 //RegExp 是js中一个内置的对象,是正则表达式的缩写 var reg = ...

  3. [译]为什么我要离开gulp和grunt转投npm脚本的怀抱

    原文链接:https://medium.freecodecamp.com/why-i-left-gulp-and-grunt-for-npm-scripts-3d6853dd22b8#.n7m1855 ...

  4. Android游戏开发实践(1)之NDK与JNI开发02

    Android游戏开发实践(1)之NDK与JNI开发02 承接上篇Android游戏开发实践(1)之NDK与JNI开发01分享完JNI的基础和简要开发流程之后,再来分享下在Android环境下的JNI ...

  5. Service是什么?Service又不是什么?

    在Android王国中,Service是一个劳动模范,总是默默的在后台运行,无怨无悔,且总是干最脏最累的活,比如下载文件,倾听音乐,网络操作等这些耗时的操作,所以我们请尊重的叫他一声:"劳模 ...

  6. Android应用项目中BaseAdapter、SimpleAdapter和ArrayAdapter中的三种适配器

    一.写在前面: 本次我们来讲解一下Android应用中三个适配器:BaseAdapter.SimpleAdapter和ArrayAdapter.其中常见的是BaseAdapter,也是个人推荐使用的适 ...

  7. seL4环境配置

      转载声明:希望大家能够从这里收获知识之外,也能够体会到博主撰写博客的辛苦.个人博客势单力薄,对于强转甚至转载博客访问量高于原文的例子不在少数. 希望能够得到大家关注的同时,也能够稍微体谅一下博主的 ...

  8. C# 模板列在绑定的时候取文本值

    查了很多资料,都说模板列无法取文本值, 需要使用FindControl, 对于列数很多的情况就要命了, 使用以下方式, 可以循环列的索引,获取到文本值 前台 <asp:TemplateField ...

  9. Java中serialVersionUID的解释及两种生成方式的区别(转载)

    转载自:http://blog.csdn.net/xuanxiaochuan/article/details/25052057 serialVersionUID作用:        序列化时为了保持版 ...

  10. android Broadcast广播消息代码实现

    我用的是Fragment , 发送写在一个类中,接收写在另外一个类的内部类中.代码动态实现注册. 代码: myReceiver = new zcd.netanything.MyCar.myReceiv ...