POJ2175 Evacuation Plan
| Time Limit: 1000MS | Memory Limit: 65536K | |||
| Total Submissions: 4617 | Accepted: 1218 | Special Judge | ||
Description
The City has a number of municipal buildings and a number of fallout shelters that were build specially to hide municipal workers in case of a nuclear war. Each fallout shelter has a limited capacity in terms of a number of people it can accommodate, and there's almost no excess capacity in The City's fallout shelters. Ideally, all workers from a given municipal building shall run to the nearest fallout shelter. However, this will lead to overcrowding of some fallout shelters, while others will be half-empty at the same time.
To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings' management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.
The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker's municipal building to the fallout shelter assigned to this worker.
The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council's incompetence.
During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.
Input
The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.
The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.
The description of The City Council's evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.
The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.
Output
Sample Input
3 4
-3 3 5
-2 -2 6
2 2 5
-1 1 3
1 1 4
-2 -2 7
0 -1 3
3 1 1 0
0 0 6 0
0 3 0 2
Sample Output
SUBOPTIMAL
3 0 1 1
0 0 6 0
0 4 0 1
Source
费用流消圈算法。
根据已有的残量矩阵建图,由于残量可以直接从图上读到,所以不需要在边里存容量。
SPFA判断是否有负环,有则处理。
有点没看懂,姑且抄份代码慢慢研究
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<queue>
#define LL long long
using namespace std;
const int INF=1e9;
const int mxn=*;
inline int read(){
int sum=,flag=;char ch=getchar();
while(ch!='-'&&(ch>''||ch<''))ch=getchar();
if(ch=='-'){flag=-;ch=getchar();}
while(ch<=''&&ch>=''){sum=sum*+ch-'';ch=getchar();}
return sum*flag;
}
struct edge{
int u,v,nxt,w;
}e[mxn*mxn*];
int hd[mxn],mct=;
void add_edge(int u,int v,int w){
// printf("add:%d to %d :%d\n",u,v,w);
e[++mct].u=u;e[mct].v=v;e[mct].nxt=hd[u];e[mct].w=w;hd[u]=mct;return;
}
int n,m,S,T;
int mp[mxn][mxn];
int dis[mxn];
int pre[mxn];
int cnt[mxn];
bool inq[mxn];
bool SPFA(){
memset(dis,0x3f,sizeof dis);
memset(inq,,sizeof inq);
memset(cnt,,sizeof cnt);
queue<int>q;
q.push(T);
dis[T]=;inq[T]=;pre[T]=;cnt[T]++;
bool flag=;
int v;
while(!q.empty() && flag){
int u=q.front();q.pop();inq[u]=;
for(int i=hd[u];i;i=e[i].nxt){
v=e[i].v;
if(dis[v]>dis[u]+e[i].w){
dis[v]=dis[u]+e[i].w;
pre[v]=u;
if(!inq[v]){
q.push(v);
inq[v]=; cnt[v]++;
if(cnt[v]>=n+m+){
flag=;
break;
}
}
}
}
}
if(flag)printf("OPTIMAL\n");
else{
printf("SUBOPTIMAL\n");
memset(inq,,sizeof inq);
int s=v;
while(){
if(!inq[s])inq[s]=,s=pre[s];
else break;
}
memset(inq,,sizeof inq);
while(!inq[s]){
inq[s]=;
int p=pre[s];
if(p>n && s!=T) mp[s][p]--;
else if(s>n && p!=T) mp[p][s]++;
s=pre[s];
}
int ed=n+m;
for(int i=;i<=n;i++){//输出可行解
for(int j=n+;j<=ed;j++){
if(j!=n+)printf(" ");
printf("%d",mp[i][j]);
}
printf("\n");
}
}
return ;
}
int x[mxn],y[mxn],w[mxn],in[mxn];
void Build(){
memset(hd,,sizeof hd);
memset(in,,sizeof in);
mct=;
int i,j;
for(i=;i<=n;i++)
for(j=n+;j<=n+m;j++){
int v=abs(x[i]-x[j])+abs(y[i]-y[j])+;//代价
// printf("%d ",v);
add_edge(i,j,v);
if(mp[i][j])add_edge(j,i,-v);
in[j]+=mp[i][j];
}
// printf("\n");
for(i=n+;i<=n+m;i++){
if(in[i]) add_edge(T,i,);
if(in[i]<w[i])add_edge(i,T,);
}
return;
}
int main(){
int i,j;
while(scanf("%d%d",&n,&m)!=EOF){
int ed=n+m;T=;
for(i=;i<=ed;i++){
x[i]=read();y[i]=read();w[i]=read();
}
for(i=;i<=n;i++)
for(j=n+;j<=ed;j++)
mp[i][j]=read();
Build();
SPFA();
}
return ;
}
POJ2175 Evacuation Plan的更多相关文章
- POJ-2175 Evacuation Plan 最小费用流、负环判定
题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个 ...
- POJ2175:Evacuation Plan(消负圈)
Evacuation Plan Time Limit: 1000MSMemory Limit: 65536KTotal Submissions: 5665Accepted: 1481Special J ...
- HDU 3757 Evacuation Plan DP
跟 UVa 1474 - Evacuation Plan 一个题,但是在杭电上能交过,在UVa上交不过……不知道哪里有问题…… 将施工队位置和避难所位置排序. dp[i][j] 代表前 i 个避难所收 ...
- Codeforces Gym 100002 E "Evacuation Plan" 费用流
"Evacuation Plan" Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...
- POJ 2175 Evacuation Plan (费用流,负环,消圈法,SPFA)
http://poj.org/problem?id=2175 Evacuation Plan Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- POJ 2175 Evacuation Plan
Evacuation Plan Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Origina ...
- POJ 2175 Evacuation Plan 费用流 负圈定理
题目给了一个满足最大流的残量网络,判断是否费用最小. 如果残量网络中存在费用负圈,那么不是最优,在这个圈上增广,增广1的流量就行了. 1.SPFA中某个点入队超过n次,说明存在负环,但是这个点不一定在 ...
- POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]
---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...
- UVA 1474 Evacuation Plan
题意:有一条公路,上面有n个施工队,要躲进m个避难所中,每个避难所中至少有一个施工队,躲进避难所的花费为施工队与避难所的坐标差的绝对值,求最小花费及策略. 解法:将施工队和避难所按坐标排序,可以看出有 ...
随机推荐
- 网址http换成https ----js
<script type="text/javascript"> var url = window.location.href; if (url.indexOf(&quo ...
- Javascript高性能编程-提高javascript加载速度
1.将所有<script>标签放在尽可能接近<body>标签底部的位置,以保证页面在脚本运行之前完成解析尽量减少对整个页面下载的影响 2.限制页面的<sc ...
- 【搬砖】安卓入门(2)- Java开发编程基础--进制转换和运算符
02.01_Java语言基础(常量的概述和使用)(掌握) A:什么是常量 在程序执行的过程中其值不可以发生改变 B:Java中常量的分类 字面值常量 自定义常量(面向对象部分讲) C:字面值常量的分类 ...
- IOS-小项目(饿了么 网络部分 简单实现)
在介绍小项目之前,在此说明一下此代码并非本人所写,我只是随笔的整理者. 在介绍之前先展现一下效果图. 看过效果图大家应该很熟悉了,就是饿了么的一个界面而已,值得注意的是,实现时并没有采用本地连接,而是 ...
- MYSQL基础操作之数据约束与关联查询
一.MYSQL约束 1.默认值约束,当字段没有插入值的时候,mysql自动给该字段分配默认值. 默认值的字段允许为空. 对默认值字段也可以插入null. CREATE TABLE STUDENT( I ...
- IntelliJ IDEA安装及jsp开发环境搭建
一.前言 现在.net国内市场不怎么好,公司整个.net组技术转型,就个人来说还是更喜欢.net,毕竟不是什么公司都像微软一样财大气粗开发出VS这样的宇宙级IDE供开发者使用,双击sln即可打开项目, ...
- C# 调用 Oracle
C# 调用 Oracle 是如此尴尬 >System.Data.OracleClient.dll —— .Net 自带的 已经 过时作废. >要链接 Oracle 服务器,必须在 本机安装 ...
- 基于IIS构建Pyathon Web服务
本文简单叙述了在Windows下,如何利用IIS构建Python Web服务. 其主要步骤如下: 1.在IIS下构建一个站点,如图: 2.配置Python文件的处理程序,如图: 3.最后,在对应站点根 ...
- Linux下查看系统版本号信息的方法
一.查看Linux内核版本命令(两种方法): 1.cat /proc/version 2.uname -a 二.查看Linux系统版本的命令(3种方法): 1.lsb_release -a,即可列出所 ...
- Windows 10不能拨L2TP协议的VPN
之前是Windows 10版本1607版本14393.102升级14393.187过后,突然出现不能拨公司防火墙的L2TPVPN了. 网上众说纷纭,原来遇到这个问题的人真不少,不过我是第一次遇到.结合 ...