Evacuation Plan
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4617   Accepted: 1218   Special Judge

Description

The City has a number of municipal buildings and a number of fallout shelters that were build specially to hide municipal workers in case of a nuclear war. Each fallout shelter has a limited capacity in terms of a number of people it can accommodate, and there's almost no excess capacity in The City's fallout shelters. Ideally, all workers from a given municipal building shall run to the nearest fallout shelter. However, this will lead to overcrowding of some fallout shelters, while others will be half-empty at the same time.

To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings' management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.

The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker's municipal building to the fallout shelter assigned to this worker.

The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council's incompetence.

During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.

Input

The input consists of The City description and the evacuation plan description. The first line of the input file consists of two numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City (all fallout shelters are numbered from 1 to M).

The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.

The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.

The description of The City Council's evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.

The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.

Output

If The City Council's plan is optimal, then write to the output the single word OPTIMAL. Otherwise, write the word SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the input file. Your plan need not be optimal itself, but must be valid and better than The City Council's one.

Sample Input

3 4
-3 3 5
-2 -2 6
2 2 5
-1 1 3
1 1 4
-2 -2 7
0 -1 3
3 1 1 0
0 0 6 0
0 3 0 2

Sample Output

SUBOPTIMAL
3 0 1 1
0 0 6 0
0 4 0 1

Source

费用流消圈算法。

根据已有的残量矩阵建图,由于残量可以直接从图上读到,所以不需要在边里存容量。

SPFA判断是否有负环,有则处理。

有点没看懂,姑且抄份代码慢慢研究

 #include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<queue>
#define LL long long
using namespace std;
const int INF=1e9;
const int mxn=*;
inline int read(){
int sum=,flag=;char ch=getchar();
while(ch!='-'&&(ch>''||ch<''))ch=getchar();
if(ch=='-'){flag=-;ch=getchar();}
while(ch<=''&&ch>=''){sum=sum*+ch-'';ch=getchar();}
return sum*flag;
}
struct edge{
int u,v,nxt,w;
}e[mxn*mxn*];
int hd[mxn],mct=;
void add_edge(int u,int v,int w){
// printf("add:%d to %d :%d\n",u,v,w);
e[++mct].u=u;e[mct].v=v;e[mct].nxt=hd[u];e[mct].w=w;hd[u]=mct;return;
}
int n,m,S,T;
int mp[mxn][mxn];
int dis[mxn];
int pre[mxn];
int cnt[mxn];
bool inq[mxn];
bool SPFA(){
memset(dis,0x3f,sizeof dis);
memset(inq,,sizeof inq);
memset(cnt,,sizeof cnt);
queue<int>q;
q.push(T);
dis[T]=;inq[T]=;pre[T]=;cnt[T]++;
bool flag=;
int v;
while(!q.empty() && flag){
int u=q.front();q.pop();inq[u]=;
for(int i=hd[u];i;i=e[i].nxt){
v=e[i].v;
if(dis[v]>dis[u]+e[i].w){
dis[v]=dis[u]+e[i].w;
pre[v]=u;
if(!inq[v]){
q.push(v);
inq[v]=; cnt[v]++;
if(cnt[v]>=n+m+){
flag=;
break;
}
}
}
}
}
if(flag)printf("OPTIMAL\n");
else{
printf("SUBOPTIMAL\n");
memset(inq,,sizeof inq);
int s=v;
while(){
if(!inq[s])inq[s]=,s=pre[s];
else break;
}
memset(inq,,sizeof inq);
while(!inq[s]){
inq[s]=;
int p=pre[s];
if(p>n && s!=T) mp[s][p]--;
else if(s>n && p!=T) mp[p][s]++;
s=pre[s];
}
int ed=n+m;
for(int i=;i<=n;i++){//输出可行解
for(int j=n+;j<=ed;j++){
if(j!=n+)printf(" ");
printf("%d",mp[i][j]);
}
printf("\n");
}
}
return ;
}
int x[mxn],y[mxn],w[mxn],in[mxn];
void Build(){
memset(hd,,sizeof hd);
memset(in,,sizeof in);
mct=;
int i,j;
for(i=;i<=n;i++)
for(j=n+;j<=n+m;j++){
int v=abs(x[i]-x[j])+abs(y[i]-y[j])+;//代价
// printf("%d ",v);
add_edge(i,j,v);
if(mp[i][j])add_edge(j,i,-v);
in[j]+=mp[i][j];
}
// printf("\n");
for(i=n+;i<=n+m;i++){
if(in[i]) add_edge(T,i,);
if(in[i]<w[i])add_edge(i,T,);
}
return;
}
int main(){
int i,j;
while(scanf("%d%d",&n,&m)!=EOF){
int ed=n+m;T=;
for(i=;i<=ed;i++){
x[i]=read();y[i]=read();w[i]=read();
}
for(i=;i<=n;i++)
for(j=n+;j<=ed;j++)
mp[i][j]=read();
Build();
SPFA();
}
return ;
}

POJ2175 Evacuation Plan的更多相关文章

  1. POJ-2175 Evacuation Plan 最小费用流、负环判定

    题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个 ...

  2. POJ2175:Evacuation Plan(消负圈)

    Evacuation Plan Time Limit: 1000MSMemory Limit: 65536KTotal Submissions: 5665Accepted: 1481Special J ...

  3. HDU 3757 Evacuation Plan DP

    跟 UVa 1474 - Evacuation Plan 一个题,但是在杭电上能交过,在UVa上交不过……不知道哪里有问题…… 将施工队位置和避难所位置排序. dp[i][j] 代表前 i 个避难所收 ...

  4. Codeforces Gym 100002 E "Evacuation Plan" 费用流

    "Evacuation Plan" Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...

  5. POJ 2175 Evacuation Plan (费用流,负环,消圈法,SPFA)

    http://poj.org/problem?id=2175 Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  6. POJ 2175 Evacuation Plan

    Evacuation Plan Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Origina ...

  7. POJ 2175 Evacuation Plan 费用流 负圈定理

    题目给了一个满足最大流的残量网络,判断是否费用最小. 如果残量网络中存在费用负圈,那么不是最优,在这个圈上增广,增广1的流量就行了. 1.SPFA中某个点入队超过n次,说明存在负环,但是这个点不一定在 ...

  8. POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]

    ---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...

  9. UVA 1474 Evacuation Plan

    题意:有一条公路,上面有n个施工队,要躲进m个避难所中,每个避难所中至少有一个施工队,躲进避难所的花费为施工队与避难所的坐标差的绝对值,求最小花费及策略. 解法:将施工队和避难所按坐标排序,可以看出有 ...

随机推荐

  1. 深入学习jQuery选择器系列第一篇——基础选择器和层级选择器

    × 目录 [1]id选择器 [2]元素选择器 [3]类选择器[4]通配选择器[5]群组选择器[6]后代选择器[7]兄弟选择器 前面的话 选择器是jQuery的根基,在jQuery中,对事件处理.遍历D ...

  2. Java输入输出常用类Scanner

    Scaner类,使用获取键盘输入. public boolean DemoTest(){ Scanner input = new Scanner(System.in); System.out.prin ...

  3. MarkdownPad 2 常用快捷键

    Ctrl + I : 斜体 Ctrl + B : 粗体 Ctrl + G : 图片 Ctrl + Q : 引用 Ctrl + 1 : 标题 1 Ctrl + 2 : 标题 2 Ctrl + 3 : 标 ...

  4. android 启动模式介绍

    Android启动模式 (1)Task:与Android系统是个多任务的系统中的任务是不同的.后者更倾向于多进程和多线程来说的,而这里的任务与application(应用程序)和activity(活动 ...

  5. 细分java环境中的JDK、JVM、JRE

    细分java环境中的JDK.JVM.JRE 近来小看了下Android,扑面而来一堆概念JDK.JVM.JRE.SDK.NDK.ADT.缕了一下,其中JDK.JVM.JRE是java环境的东西,而SD ...

  6. 二维码合成,将苹果和安卓(ios和android)合成一个二维码,让用户扫描一个二维码就可以分别下载苹果和安卓的应用

    因为公司推广的原因,没有合适的将苹果和安卓(ios和android)合成一个二维码的工具. 因为这个不难,主要是根据浏览器的UA进行判断,所以就自己开发了一个网站 网站名称叫:好推二维码  https ...

  7. html img图片等比例缩放

    在img标签里面只设置宽,不设置高,图片就会等比例缩放.

  8. Webform(七)——内置对象(Session、Application)和Repeater的Command操作

    内置对象:用于页面之间的数据交互 为什么要使用这么内置对象?因为HTTP的无状态性. 一.内置对象 (一)Session 跟Cookies一样用来存储用户数据 1.Session.Cookies对比 ...

  9. 教程三:Wechat库的使用

    上一篇教程中我们提供了wechat的php的库,这里我们简要介绍一个这个库的源码和使用.这个库的主文件为`Wechat.php`,其余的几个文件都是为这个文件服务的,提供加解密,消息拼接等功能.`We ...

  10. js控制div滚动条,滚动滚动条使div中的元素可见并居中

    1.html代码如下 <div id="panel"> <div id="div1"></div> <div id=& ...