prufer序列是一个定义在无根树上的东西。

构造方法是:每次选一个编号最小的叶子结点,把他的父亲的编号加入到序列的最后。然后删掉这个叶节点。直到最后只剩下两个节点,此时得到的序列就是prufer序列。

这个构造可以用优先队列做到 $O(n\log n)$。

至于如何用prufer序列反推出树,我还有点没看懂怎么 $O(n\log n)$,以后看懂了再来填坑吧。


prufer序列的一些性质:

  1. 一棵 $n$ 个点的无根树prufer序列长度为 $n-2$。
  2. 无根树和prufer序列一一对应,一个无根树唯一对应一个prufer序列,一个prufer序列唯一对应一个无根树。
  3. 一个在树中度数为 $d$ 的点在prufer序列中出现了恰好 $d-1$ 次。

那么就能推出一些常用结论:

  1. $n$ 个点的无根树(带标号)有 $n^{n-2}$ 棵。(prufer序列长度为 $n-2$,每个位置都可以随便选 $1$ 到 $n$ 的数)
  2. $n$ 个点的度数为 $d_1,d_2\cdots,d_n$ 的无根树个数为 $\dfrac{(n-2)!}{\prod(d_i-1)!}$。因为 $i$ 在prufer序列中会出现 $d_i-1$ 次,最后计算出来就是这个式子。

一些例题:

洛谷2290 [HNOI2004]树的计数(题解待填充)

洛谷2624 [HNOI2008]明明的烦恼(题解待填充)

洛谷5219 无聊的难水题 I(题解待填充)

prufer序列学习笔记的更多相关文章

  1. prufer 序列 学习笔记

    prufer 序列是一种无根树的序列,对于一个 \(n\) 个点的树,其 prufer 序列的长度为 \(n-2\). prufer 序列和原树之间都可以唯一地相互转化. 构造 构造 prufer 序 ...

  2. prufer编码学习笔记

    prufer 编码 对于一个无根树,他的 prufer 编码是这样确定的: 每次找到编号最小的一个叶子节点,也就是度数为\(1\)的节点,把和它相连的点,加入 prufer 编码序列的末尾,然后把这个 ...

  3. 树的计数 + prufer序列与Cayley公式 学习笔记

    首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...

  4. [学习笔记]prufer序列

    前言 PKUWC和NOIWC都考察了prufer序列,结果统统爆零 prufer序列就是有标号生成树对序列的映射 prufer序列生成 每次选择编号最小的叶子删掉,把叶子的父亲加入prufer序列,直 ...

  5. python 学习笔记1(序列;if/for/while;函数;类)

    本系列为一个博客的学习笔记,一部分为我原创. 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 1. print 可以打印 有时需要 ...

  6. python学习笔记(一)元组,序列,字典

    python学习笔记(一)元组,序列,字典

  7. 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...

  8. prufer序列笔记

    prufer序列 度娘的定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 对于一棵确定 ...

  9. Prufer codes与Generalized Cayley's Formula学习笔记

    \(Prufer\)序列 在一棵\(n\)个点带标号无根树里,我们定义这棵树的\(Prufer\)序列为执行以下操作后得到的序列 1.若当前树中只剩下两个节点,退出,否则执行\(2\) 2.令\(u\ ...

随机推荐

  1. Prometheus & SoundCloud

    Prometheus 系统监控方案 一 - Vovolie - 博客园https://www.cnblogs.com/vovlie/p/Prometheus_CONCEPTS.html Prometh ...

  2. TCP 握手和挥手图解(有限状态机)

    1.引言 TCP 这段看过好几遍,老是记不住,没办法找工作涉及到网络编程这块,各种问 TCP .今天好好整理一下握手和挥手过程.献给跟我一样忙碌,找工作的童鞋,欢迎大神批评指正. 2.TCP 的连接建 ...

  3. ssm项目跨域访问

    最近使用ssm开发了一个项目,为了项目的开发速度,采用的是前后端同时开发,所以前端文件没有集成在项目中,最后在调试时涉及到了跨域.跨域的解决方法很多,我采用的是最简单的一种,代码如下: 新建一个过滤器 ...

  4. js中的call、apply、bind

    在js中每个函数都包含两个非继承而来的方法:call()和apply() call和apply的作用都是在特定的作用域中将函数绑定到另外一个对象上去运行,即可以用来重新定义函数的执行环境,两者仅在定义 ...

  5. 如何在TypeScript中使用第三方JavaScript框架

    一.安装typings 使用npm全局安装typings :npm install -g typings 安装成功. 二,搜索资源,支持模糊搜索:typings search base64 三.安装t ...

  6. dentry path_lookat dput

    https://www.ibm.com/developerworks/cn/linux/l-cn-usagecounter/index.html https://blog.csdn.net/young ...

  7. saltstack一

    Saltstack概述 Salt一种全新的基础设施管理方式,部署轻松,在几分钟内可运行起来,扩展性好,很容易管理上万台服务器,速度够快,服务器之间秒级通讯. salt底层采用动态的连接总线, 使其可以 ...

  8. CSS3圆角详解(border-radius)

    1.CSS3圆角的优点 传统的圆角生成方案,必须使用多张图片作为背景图案.CSS3的出现,使得我们再也不必浪费时间去制作这些图片了,而且还有其他多个优点: 减少维护的工作量.图片文件的生成.更新.编写 ...

  9. Lodop打印控件打印机可打区域的影响 设置纸张边缘为基点

    由于打印机千差万别,打印开发也要注意针对客户各种打印机进行处理,Lodop提供了打印维护(PRINT_SETUP)可针对每个客户端进行微调,保存结果保存在客户端本地,对其他访问网站的客户没有影响. 由 ...

  10. Vue-router的API详解

    前面的话 本文将详细介绍Vue-router的API router-link <router-link> 组件支持用户在具有路由功能的应用中点击导航. 通过 to 属性指定目标地址,默认渲 ...