HDU 4549 M斐波那契数列(矩阵快速幂)
题目链接:M斐波那契数列
题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$。给定$a,b,n$,求$F[n]$。
题解:暴力打表后发现$ F[n]=a^{fib(n-1)} * b^{fib(n)} $
斐波那契数列可用矩阵快速幂求解。但是此题中n较大,fib会爆掉。这时候需要引入费马小定理优化。
证明:$a^x \% p = a^{x \%(p-1)} \%p$
1. $a^x \% p = a^{x \% (p-1) + x/(p-1)*(p-1)} \% p$
2. $a^x \% p = a^{x \% (p-1)} * a^{x/(p-1)*(p-1)} \%p$
3. $a^{x/(p-1)*(p-1)} \% p= ({a^{p-1}}) ^ {(x/(p-1))} \%p = 1^ {(x/(p-1))}$
把3式带入2式,即可证明。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 2
using namespace std; typedef long long ll;
const ll mod=; struct mat
{
ll m[N][N]=
{
{,},
{,}
};
}; mat mul(mat a,mat b,ll p)
{
mat ans;
int i,j,k;
for(i=;i<N;i++)
for(j=;j<N;j++)
ans.m[i][j]=; for(i=;i<N;i++)
for(j=;j<N;j++)
for(k=;k<N;k++)
ans.m[i][j]=(ans.m[i][j]+a.m[i][k]*b.m[k][j])%p;
return ans;
} ll matpow(ll n,ll p)
{
if(n<) return ;
mat ans,tmp;
int i,j;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
ans.m[i][j]=; ans.m[][]=;
ans.m[][]=;
while(n)
{
if(n&) ans=mul(tmp,ans,p);
tmp=mul(tmp,tmp,p);
n=n>>;
}
return ans.m[][]%p;
} ll fast_mod(ll a,ll b,ll p){
ll res=;
while(b){
if(b&) res=(res*a)%p;
a=(a*a)%p;
b>>=;
}
return res;
} int main(){
ll n,a,b; while(scanf("%lld%lld%lld",&a,&b,&n)!=EOF){
if(n==){
printf("%lld\n",a);
continue;
}
else if(n==){
printf("%lld\n",b);
continue;
}
else if(a==||b==){
printf("0\n");
continue;
}
ll m1=matpow(n-,mod-);
ll m2=matpow(n,mod-);
ll ans=(fast_mod(a,m1,mod)*fast_mod(b,m2,mod))%mod;
printf("%lld\n",ans%mod);
} return ;
}
HDU 4549 M斐波那契数列(矩阵快速幂)的更多相关文章
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- POJ 3070 Fibonacci【斐波那契数列/矩阵快速幂】
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17171 Accepted: 11999 Descr ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- [HDU 4549] M斐波那契数列
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
随机推荐
- echarts使用笔记五:echarts的Zoom控件
option = { title: { text: '趋势' }, tooltip : { trigger: 'axis', show:true, axisPointer : { // 坐标轴指示器, ...
- ubuntu安装chkconfig.deb系统服务管理工具
chkconfig简介:chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息. 参数用法: --add 增加所指定的系统服务,让chkconfig指令得以管理它,并同时在系统 ...
- 导出数据之CSV
平常开发中,常见的需求就是导出数据为Excel,CSV格式的表格.所以,在此记录一下导出CSV数据的小方法 $fileName = 'demo.csv'; $data = [ ['id'=>1, ...
- 记自己在mybatis中设置jdbcType的一个坑
项目是用ssm搭建的.主要是为app数据接口.其中有一个需求就app想要查询一段时间内某个用户的测量信息,所以app给我后端传递了3个参数,分别是appuserId(String),startDate ...
- drf实现图片验证码功能
一.背景 在之前实现过django的图片验证码,有自己实现过的,也有基于django-simple-captcha的,都是基于form表单验证,若自己实现,可以获取相应的标签name便可以获取判断,若 ...
- Java多线程之通过标识关闭线程
package org.study2.javabase.ThreadsDemo.status; /** * @Auther:GongXingRui * @Date:2018/9/19 * @Descr ...
- LODOP直接用base64码输出图片
Lodop中的ADD_PRINT_IMAGE,也可以直接输出base64码图片,不用加img标签,如果加了img标签,会被当做超文本对待,受浏览器引擎解析的影响. 什么时候使用base64码直接输出比 ...
- linux 目录分类与文件操作
/ 虚拟根目录 一般不会在这里存储文件 /bin 二进制目录,存放需要GNU用户级的工具 /boot 启动目录,存放启动文件 /dev 设备目录,linux在这里创建设备节点 /etc 系统配置文件目 ...
- windows开关机事件
开关机事件.xml <ViewerConfig> <QueryConfig> <QueryParams> <Simple> <BySource&g ...
- BZOJ2219数论之神——BSGS+中国剩余定理+原根与指标+欧拉定理+exgcd
题目描述 在ACM_DIY群中,有一位叫做“傻崽”的同学由于在数论方面造诣很高,被称为数轮之神!对于任何数论问题,他都能瞬间秒杀!一天他在群里面问了一个神题: 对于给定的3个非负整数 A,B,K 求出 ...