poj 2356 (抽屉原理)
题目链接:http://poj.org/problem?id=2356
题目大意:给你n个数,要你从n个数选出若干个数,要求这若干个数的和是n的倍数,输出选择数的个数,以及相应的数。
解题思路:
以下摘自博客:https://www.cnblogs.com/pengwill/p/7367031.html
二、鸽巢原理(抽屉原理)
基本描述
桌子上有是个苹果,把这十个苹果放到九个抽屉里,无论怎么放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是所说的“抽屉原理”。
更一般的表述:如果每一个抽屉代表一个集合,每一个苹果就可以代表一个元素。加入有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。
第一抽屉原理
原理1
把多余n+1个物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
原理2
把多余mn+1(n不为0)个物体放到n个抽屉里面,则至少有一个抽屉里面不少于(m+1)的物体。
第二抽屉原理
把(mn -1 )个物体放入n个抽屉中,其中必须有一个抽屉不多余(m-1)个物体。
如将3*5-1 = 14个物体放入5个抽屉中,则必定有一个抽屉中的物体数目少于3-1=2.
举例
属相问题
属相有12个,那么任意37个人中,至少有几个人属相相同?
上取整(37 / 12) = 4
招聘问题
有300人到招聘会求职,其中软件设计有100人,市场营销有80人,财务管理有70人,人力资源管理有50人。那么至少有多少人找到工作才能保证一定有70人找的工作专业相同?
考虑最差情况,即软件设计,市场营销,财务管理均招了69人,人力资源管理招了50人,此时再多招1人,就有70人找的工作专业相同了。
故答案为 69*3 + 50 + 1 = 258
衬衫问题
一个抽屉里有20件衬衫,其中4件是蓝的,7件是灰的,9件是红的,则应从中随意取出多少件才能保证有5件是同颜色的?
考虑最差情况,即已经取出了4件蓝色,4件灰色,4件红色,再多取出1件就满足条件。
故答案为 4 + 4 + 4 + 1 = 13
首先我们可以分别求出这n个数的前缀和,sum[1],sum[2],……,sum[n];如果当中有n的倍数,则直接输出就好了。
否则sum[1]%n,sum[2]%n,……,sum[n]%n,这n个数必定在区间[1,n-1]之间,这就相当于有n个物品和n-1个抽屉,根据第一抽屉原理可得,必定存在i,j,假设i<j,使得sum[i]%n=sum[j]%n,则(sum[j]-sum[i])%n=0。输出答案只要出j-i,和a[i+1],a[i+2]……a[j]就可以了。
代码:
- #include<iostream>
- using namespace std;
- typedef long long ll;
- ll n,a[],sum[],pos[];
- //pos[i]记录sum[i]%n是否出现过,如果以出现,则标记为出现的初始位置
- int main(){
- cin>>n;
- for(int i=;i<=n;i++){
- cin>>a[i];
- sum[i]=sum[i-]+a[i];
- }
- for(int i=;i<=n;i++){
- if(sum[i]%n==){
- cout<<i<<endl;
- for(int j=;j<=i;j++)cout<<a[j]<<endl;
- break;
- }
- if(pos[sum[i]%n]){
- cout<<i-pos[sum[i]%n]<<endl;
- for(int j=pos[sum[i]%n]+;j<=i;j++)cout<<a[j]<<endl;
- break;
- }
- pos[sum[i]%n]=i;
- }
- return ;
- }
poj 2356 (抽屉原理)的更多相关文章
- poj 2356 抽屉原理
基本原理: n+1个鸽子放到n个笼子里,至少有一个笼子里有两只及其以上的鸽子.若有n个笼子,kn+1个鸽子,至少有一个笼子里面有k+1个鸽子: 题意:给定N个数,挑出一些数,他们和和是n的整数倍: 分 ...
- poj 2356鸽笼原理水题
关于鸽笼原理的知识看我写的另一篇博客 http://blog.csdn.net/u011026968/article/details/11564841 (需要说明的是,我写的代码在有答案时就输出结果了 ...
- POJ 2356 Find a multiple 抽屉原理
从POJ 2356来体会抽屉原理的妙用= =! 题意: 给你一个n,然后给你n个数,让你输出一个数或者多个数,让这些数的和能够组成n: 先输出一个数,代表有多少个数的和,然后再输出这些数: 题解: 首 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- Find a multiple POJ - 2356 (抽屉原理)
抽屉原理: 形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2. ...
- POJ 2356 && POJ 3370 鸽巢原理
POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6631 Accepted: 2448 ...
- Find a multiple POJ - 2356 【鸽巢原理应用】
Problem DescriptionThe input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). E ...
随机推荐
- Vue实例:演示input 和 textarea 元素中使用 v-model 实现双向数据绑定
最终效果: 主要代码: <template> <div> <p>input 元素:</p> <input v-model="messag ...
- Python Note1: Pycharm的安装与使用
前言 曾经学过一段时间python,虽然现在工作了主要使用C#和C++,但是觉得还是有必要在业余的时候学习学习python,提升下自己的知识面,毕竟技多不压身,加油吧! 安装与激活Pycharm 个人 ...
- MyBatis映射文件3(参数处理Map)
参数命名 POJO 如果多个参数,正好是业务逻辑的数据模型,那么我们就可以直接传入POJO,这样#{}中就可以直接使用属性名 Map 如果多个参数不是业务逻辑的数据模型,没有对应的POJO,为了方便, ...
- InputFormat的数据划分、Split调度、数据读取
在执行一个Job的时候,Hadoop会将输入数据划分成N个Split,然后启动相应的N个Map程序来分别处理它们.数据如何划分?Split如何调度(如何决定处理Split的Map程序应该运行在哪台Ta ...
- python 第三方包安装
1.tqdm 安装 pip install tqdm 使用时可能会报缺少stopwords.punkt错,原因是缺失相应文件,下载即可: import nltk nltk.download('sto ...
- Lodop打印维护PRINT_SETUP本地缓存ini文件
针对千差万别的客户端,Lodop提供了打印维护(PRINT_SETUP),可以针对某个客户端微调,调整结果保存在客户端本地,不会影响其他访问网站的用户的使用. 打印维护使用方法:1.PRINT_INI ...
- Deploy .NET Core with Docker
Creating a .NET Core project If you already have an existing .NET Core project you are more than wel ...
- 使用update可以防止并发问题(保证数据的准确性),如果使用select会产生并发问题 ; select * from xx for update 给查询开启事务,默认情况下是没有事物的
update可以锁住数据防止数据被更新且导致与查询出的数据有误差,如果响应条数为0.说明更新失败 则可以回滚事务;
- vuex2.0 基本使用(4) --- modules
vue 使用的是单一状态树对整个应用的状态进行管理,也就是说,应用中的所有状态都放到store中,如果是一个大型应用,状态非常多, store 就会非常庞大,不太好管理.这时vuex 提供了另外一种方 ...
- 【C/C++】实现数据结构广义表
1. 广义表的定义 每个元素可以为Atom,原子,也可以为线性表. 线性表的推广.线性表元素有唯一的前驱和后继,为线性表,而广义表是多层次的线性表 表头:第一个元素,可能是 ...