题目描述

  有\(n\)种面值不同的硬币,每种有无限个,且任意两个\((x,y)\)要么\(x\)是\(y\)的倍数,要么\(y\)是\(x\)的倍数。

  你要取\(m\)元钱,问你有多少种不同的取法。

  \(n\leq 50,m\leq {10}^{18}\)

题解

  假设面值为\(a_1,a_2,\ldots,a_n\)

  先把所有硬币按面值从小到大排序。

  那么考虑从小到大取钱。

  如果前面\(i\)种面值已经取完了,那么取的钱数\(\bmod\)\(a_{i+1}\)已经确定了。

  有这么一个DP:设\(f_i(x)\)为取完了前面\(i\)种面值的硬币,取的钱数为\(xa_i+m\bmod a_i\)的方案数。

  转移:枚举\(i\)这种硬币用了多少个(或者说剩下了多少个):

\[\begin{align}
f_i(x)&=\sum_{j=0}^x f_{i-1}(\frac{ja_i+m\bmod a_i}{a_{i-1}})\\
&=\sum_{j=0}^x f_{i-1}(bj+c)\\
\end{align}
\]

  我们很容易发现\(f_i(x)\)是一个\(i\)次函数。

  那么只需要求\(f_i(0)\ldots f_i(i)\)就可以了。

  每次可以通过线性插值求出。

  时间复杂度:\(O(n^3)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int p=998244353;
ll fp(ll a,ll b){ll s=1;for(;b;b>>=1,a=a*a%p)if(b&1)s=s*a%p;return s;}
int f[60][60];
int ifac[60];
int inv[60];
int pp[60];
int *pre=pp+1;
int suf[60];
ll a[60];
int n;
ll m;
int c[60];
int gao(int id,ll x)
{
if(x<=id)
return f[id][x];
x%=p;
pre[-1]=1;
for(int i=0;i<=id;i++)
pre[i]=ll(x-i)*pre[i-1]%p;
suf[id+1]=1;
for(int i=id;i>=0;i--)
suf[i]=ll(x-i)*suf[i+1]%p;
ll s=0;
for(int i=0;i<=id;i++)
s+=(ll)f[id][i]*pre[i-1]%p*suf[i+1]%p*ifac[i]%p*ifac[id-i]%p*((id-i)&1?-1:1);
return s%p;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d%lld",&n,&m);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
ifac[0]=ifac[1]=inv[1]=1;
for(int i=2;i<=n;i++)
{
inv[i]=(ll)-p/i*inv[p%i]%p;
ifac[i]=(ll)ifac[i-1]*inv[i]%p;
}
f[1][0]=1;
f[1][1]=1;
for(int i=2;i<=n;i++)
for(int j=0;j<=i;j++)
f[i][j]=(f[i][j-1]+gao(i-1,(j*a[i]+m%a[i])/a[i-1]))%p;
int ans=gao(n,m/a[n]);
ans=(ans+p)%p;
printf("%lld\n",ans);
return 0;
}

【XSY2759】coin DP 线性插值的更多相关文章

  1. POJ1742 Coin [DP补完计划]

    题目传送门 Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 41707   Accepted: 14125 Des ...

  2. [hdu 1398]简单dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1398 看到网上的题解都是说母函数……为什么我觉得就是一个dp就好了,dp[i][j]表示只用前i种硬币 ...

  3. 解题:USACO13NOV No Change

    题面 在朴素中透着一点新意的状压DP 一个很暴力的思路是枚举位置,状态和硬币,每次二分出向前最多能买到哪里,复杂度爆炸($O(2^knklog$ $n)$) 考虑优化,不妨先预处理一下$goal[i] ...

  4. Leetcode 322.零钱兑换

    零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: co ...

  5. Java实现 LeetCode 518 零钱兑换 II

    518. 零钱兑换 II 给定不同面额的硬币和一个总金额.写出函数来计算可以凑成总金额的硬币组合数.假设每一种面额的硬币有无限个. 示例 1: 输入: amount = 5, coins = [1, ...

  6. UVA 674 Coin Change (DP)

    Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make c ...

  7. UVA 674 Coin Change 换硬币 经典dp入门题

    题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...

  8. UVA 674 Coin Change(dp)

    UVA 674  Coin Change  解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...

  9. [HDOJ]Coin Change(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2069 题意 有面值1,5,10,25,50的硬币数枚,对于输入的面值n,输出可凑成面值n(且限制总硬笔 ...

随机推荐

  1. sort 快排解决百万级的排序

    问题:给n个整数,按从大到小的顺序,输出前m大的整数0<m,n<1000000,每个整数[-500000,500000]输入:5 33 -35 92 213 -644输出:213 92 3 ...

  2. p151开映射札记

    1. 如何理解这句话? 2.连续有什么用? 3.为什么区间包含,经过算子T还是包含? 谢谢 谢谢学长 我懂了  1.2.     3有点儿模糊 1.连续等价于开集原像是开集,而可逆算子的逆的原像就是的 ...

  3. Vue使用的一些实例

    1.实现歌曲的点击切换. <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  4. if判断条件注意!!!

    if(condition){ console.log(condition为true才执行): } 实际上会对condition执行Boolean()转型函数,将其转换成布尔值

  5. tomcat启动的时候报错Failed to start component

    在idea中运行tomcat时,遇到异常,异常信息如下: 16-Jan-2018 16:33:37.325 信息 [localhost-startStop-1] org.apache.catalina ...

  6. [转帖]linux下的CPU、内存、IO、网络的压力测试

    linux下的CPU.内存.IO.网络的压力测试 https://www.cnblogs.com/zhuochong/p/10185881.html 一.对CPU进行简单测试: 1.通过bc命令计算特 ...

  7. UTC时间、GMT时间、本地时间、Unix时间戳

    引用: https://blog.csdn.net/u012102306/article/details/51538574 https://blog.csdn.net/foxir/article/de ...

  8. mybatis源码分析(二)------------配置文件的解析

    这篇文章中,我们将讲解配置文件中 properties,typeAliases,settings和environments这些节点的解析过程. 一 properties的解析 private void ...

  9. 配置Google Gmail分类和过滤器

    简单的记两笔. 首先点击右上角的⚙️里面选择settings. 选择Filters and Blocked Addresses 在这个页面可以选择 create a new filter创建一个新的过 ...

  10. 如何通过stat获取目录或文件的权限的数字形式

    man stat 查看帮助. -c --format=FORMAT use the specified FORMAT instead of the default; output a new line ...