传送门:>Here<

给出一个n*n的棋盘($n \leq 9$),放$k$个骑士,每个骑士可以攻击相邻的八个方向。问所有骑士互不侵犯的摆放方案数。

解题思路

决策问题可以通过搜索解决,而DP就是记忆化搜索。而在这里,我们直接考虑整排的决策比较方便。

在搜索时我们需要利用到哪些信息来完成决策?显然能影响到当前决策的有上一排的各个骑士位置,还能用几个骑士。而上一排的各个骑士位置是一个布尔数组,转化为DP的话这就成为了DP的一个状态。数据范围小的时候,我们是可以直接将布尔数组转为二进制作为状态的。我们称这种DP方法为状态压缩DP。

分析DP的时间复杂度,一般是状态数量乘上转移的复杂度。这里状态数是$O(2^nnk)$,而转移时枚举上一行状态$O(2^n)$,故总复杂度为$O(2^{2n}n^3)$。

这样的复杂度是过不了的。而事实上,一行内的合法状态数远不足$2^n$,所以我们可以预处理出每一行的合法状态数,这样就能过了。

$Code$

/*By QiXingzhi*/
#include <cstdio>
#define N (4010)
#define r read()
#define INF (0x3f3f3f3f)
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
typedef long long ll;
#define int ll
using namespace std;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
int n,K,tot,ans;
int sta[N],num[N],f[][N][];
void Dfs(int x, int cur, int sum){
if(x >= n){
++tot;
sta[tot] = cur;
num[tot] = sum;
f[][tot][sum] = ;
return;
}
Dfs(x+,cur,sum);
Dfs(x+,cur+(<<x),sum+);
}
#undef int
int main(){
#define int ll
n=r,K=r;
Dfs(,,);
for(int i = ; i <= n; ++i){
for(int j = ; j <= tot; ++j){
for(int k = ; k <= tot; ++k){
if(sta[j] & sta[k]) continue;
if(sta[j] & (sta[k] << )) continue;
if(sta[j] & (sta[k] >> )) continue;
for(int s = num[j]; s <= K; ++s){
f[i][j][s] += f[i-][k][s-num[j]];
}
}
}
}
for(int i = ; i <= tot; ++i) ans += f[n][i][K];
printf("%lld",ans);
return ;
}

[SCOI2005] 互不侵犯的更多相关文章

  1. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  2. SCOI2005互不侵犯King

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1499  Solved: 872[Submit][S ...

  3. 洛谷1377 M国王 (SCOI2005互不侵犯King)

    洛谷1377 M国王 (SCOI2005互不侵犯King) 本题地址:http://www.luogu.org/problem/show?pid=1377 题目描述 天天都是n皇后,多么无聊啊.我们来 ...

  4. 1087: [SCOI2005]互不侵犯King

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4276  Solved: 2471[Submit][ ...

  5. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  6. BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

    BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...

  7. bzoj 1087 [SCOI2005]互不侵犯King 状态压缩dp

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Descripti ...

  8. 状压DP【洛谷P1896】 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  9. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  10. BZOJ 1087:[SCOI2005]互不侵犯King(状压DP)

    [SCOI2005]互不侵犯King [题目描述] 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

随机推荐

  1. 【深度学习】一文读懂机器学习常用损失函数(Loss Function)

    最近太忙已经好久没有写博客了,今天整理分享一篇关于损失函数的文章吧,以前对损失函数的理解不够深入,没有真正理解每个损失函数的特点以及应用范围,如果文中有任何错误,请各位朋友指教,谢谢~ 损失函数(lo ...

  2. 07 YAPI/基础设施 - DevOps之路

    07 YAPI/基础设施 - DevOps之路 文章Github地址,欢迎start:https://github.com/li-keli/DevOps-WiKi 简介 YApi 是一个可本地部署的. ...

  3. 搜狐畅游一面(c++)

    上来是个小姐姐,有点懵.. 1.  介绍 2.  项目 3.  实习 4.  用的协议 tcp和udp的协议 5.  select 和epoll(忘了) 6. 数据库的隔离级别, 死锁, 怎么避免死锁 ...

  4. H5 66-清除浮动方式二

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. c++入门之—运算符重载和友元函数

    运算符重载的意义是:将常见的运算符重载出其他的含义:比如将*重载出指针的含义,将<<与cout联合使用重载出输出的含义,但需要认识到的问题是:运算符的重载:本质仍然是成员函数,即你可以认为 ...

  6. Codeforces Round #481 (Div. 3)Petya's Exams CodeForces - 978G

    Petya studies at university. The current academic year finishes with nn special days. Petya needs to ...

  7. Elasticsearch--Aggregation详细总结(聚合统计)

    Elasticsearch的Aggregation功能也异常强悍. Aggregation共分为三种:Metric Aggregations.Bucket Aggregations. Pipeline ...

  8. selenium模拟登陆淘宝

    from selenium import webdriver import time from selenium.webdriver.common.by import By from selenium ...

  9. Linux sudoers

    xxx is not in the sudoers file.This incident will be reported.的解决方法 - xiaochaoyxc - 博客园http://www.cn ...

  10. 编写自己的composer项目

    编写自己的composer项目   composer的出现给php开发带来极大的便利, 配合phpunit的测试工具, 也可以更好的规范php开发. 尽管这些标准不是官方提供的, 但现在大部分的php ...