传送门:>Here<

给出一个n*n的棋盘($n \leq 9$),放$k$个骑士,每个骑士可以攻击相邻的八个方向。问所有骑士互不侵犯的摆放方案数。

解题思路

决策问题可以通过搜索解决,而DP就是记忆化搜索。而在这里,我们直接考虑整排的决策比较方便。

在搜索时我们需要利用到哪些信息来完成决策?显然能影响到当前决策的有上一排的各个骑士位置,还能用几个骑士。而上一排的各个骑士位置是一个布尔数组,转化为DP的话这就成为了DP的一个状态。数据范围小的时候,我们是可以直接将布尔数组转为二进制作为状态的。我们称这种DP方法为状态压缩DP。

分析DP的时间复杂度,一般是状态数量乘上转移的复杂度。这里状态数是$O(2^nnk)$,而转移时枚举上一行状态$O(2^n)$,故总复杂度为$O(2^{2n}n^3)$。

这样的复杂度是过不了的。而事实上,一行内的合法状态数远不足$2^n$,所以我们可以预处理出每一行的合法状态数,这样就能过了。

$Code$

/*By QiXingzhi*/
#include <cstdio>
#define N (4010)
#define r read()
#define INF (0x3f3f3f3f)
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
typedef long long ll;
#define int ll
using namespace std;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
int n,K,tot,ans;
int sta[N],num[N],f[][N][];
void Dfs(int x, int cur, int sum){
if(x >= n){
++tot;
sta[tot] = cur;
num[tot] = sum;
f[][tot][sum] = ;
return;
}
Dfs(x+,cur,sum);
Dfs(x+,cur+(<<x),sum+);
}
#undef int
int main(){
#define int ll
n=r,K=r;
Dfs(,,);
for(int i = ; i <= n; ++i){
for(int j = ; j <= tot; ++j){
for(int k = ; k <= tot; ++k){
if(sta[j] & sta[k]) continue;
if(sta[j] & (sta[k] << )) continue;
if(sta[j] & (sta[k] >> )) continue;
for(int s = num[j]; s <= K; ++s){
f[i][j][s] += f[i-][k][s-num[j]];
}
}
}
}
for(int i = ; i <= tot; ++i) ans += f[n][i][K];
printf("%lld",ans);
return ;
}

[SCOI2005] 互不侵犯的更多相关文章

  1. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  2. SCOI2005互不侵犯King

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1499  Solved: 872[Submit][S ...

  3. 洛谷1377 M国王 (SCOI2005互不侵犯King)

    洛谷1377 M国王 (SCOI2005互不侵犯King) 本题地址:http://www.luogu.org/problem/show?pid=1377 题目描述 天天都是n皇后,多么无聊啊.我们来 ...

  4. 1087: [SCOI2005]互不侵犯King

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4276  Solved: 2471[Submit][ ...

  5. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  6. BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

    BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...

  7. bzoj 1087 [SCOI2005]互不侵犯King 状态压缩dp

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Descripti ...

  8. 状压DP【洛谷P1896】 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  9. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  10. BZOJ 1087:[SCOI2005]互不侵犯King(状压DP)

    [SCOI2005]互不侵犯King [题目描述] 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

随机推荐

  1. SAI窗口无法移动

    昨天开SAI遇到了一个很奇怪的问题,改变了双屏的位置后SAI的窗口不能移动两边也有黑边,貌似是这样,标题栏只能进行上下改变窗口大小,不能移动窗体 问题是这样出现的:把任务栏解除锁定拖到侧边就会这样 解 ...

  2. Web测试和App测试有什么区别

    WEB测试和App测试从流程上来说,没有区别.都需要经历测试计划方案,用例设计,测试执行,缺陷管理,测试报告等相关活动.从技术上来说,WEB测试和APP测试其测试类型也基本相似,都需要进行功能测试.性 ...

  3. 基于linux下的krpano的使用

    鉴于目前网络上关于krpano的使用和介绍少之又少,结合自己的学习和使用经历,做个总结和记录. 1.安装 下载地址: linux https://krpano.com/forum/wbb/index. ...

  4. H5 id选择器

    09-id选择器 迟到毁一生 早退穷三代 按时上下班 必成高富帅 <!DOCTYPE html> <html lang="en"> <head> ...

  5. mybatis入门配置和调试

    欢迎转载http://www.cnblogs.com/jianshuai520/p/8669177.html大家一起努力,如果看的时候有图片半边遮挡起来的话,右键查看图片,就可以观看完整的图片,具体怎 ...

  6. oracle查询不走索引的一些情况(索引失效)

    Oracle建立索引的目的是为了避免全表扫描,提高查询的效率. 但是有些情况下发现即使建立了索引,但是写出来的查询还是很慢,然后会发现是索引失效导致的,所以需要了解一下那些情况会导致索引失效,即查询不 ...

  7. 将大数组里面的小数组平行展开的实现(Making a flat list out of list of lists in Python)

    今天在生成数据的时候遇到了这个需求,其实写一个for循环可以很容易解决这个问题,但是无论是性能还是酷炫程度上都不行 所以顺手搜索了一下. 例子是将 l = [[1, 2, 3], [4, 5, 6], ...

  8. django migrate报错(提前删除表等)

    python3 manage.py makemigrations python3 manage.py migrate ##报错 改为##更改migrates的状态 python3 manage.py ...

  9. SLAs-笔记

    类型 sla status determined at time intervals over a timeline: average transaction response time errors ...

  10. SpringBoot之通过yaml绑定注入数据

    依赖包: <!--配置文件注解提示包--> <dependency> <groupId>org.springframework.boot</groupId&g ...