题目

首先我们先把题目分析一下。

emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大公约数为一,那这题的意思就变成了,在一个n * n的方格内寻找所有点的横坐标和纵坐标互质的点的个数。

但是这样复杂度肯定是过不去的。打表时间花费也是很多的,所以我们需要找到加快速度的方法,就是用欧拉函数来加快速度,所以我们就要实现大的优化,我们先明确欧拉函数是个什么东西.

欧拉函数

\(φ(x)\)表示在\(1\)到\(x - 1\)中所有与x互质的数的个数。这个函数一般就叫做欧拉函数。这个函数还具有一些性质.

  1. 如果\(x\)是质数,那\(φ(x)=x-1\)。(质数的性质就是这样)
  2. 若\(m\)与\(n\)互质,那\(φ(n * m)= φ(n)* φ(m)\).(可以根据乘法原理推出)
  3. 当\(x\)是质数时,那\(φ (x^k)=(x-1)×x^{k-1}\)

所以我们可以通过观察和推算发现,如果想求出结果,那就是对于图的每个横坐标,都记录他的欧拉函数的值,然后加起来就是最终结果。然后把结果乘2,因为纵坐标也需要进行一波这样的操作。最后再加上一(因为2,2这个点也算)

那到底应该怎么筛使得欧拉函数能够很快的算出来呢。

线性筛和欧拉筛

这里我们就要引进两个算法——线性筛和欧拉筛。

线性筛是指以线性的时间筛素数,欧拉筛是以线性的时间求出欧拉函数。

而且他们之间有着异曲同工之妙。

线性筛

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#define maxn 100010
int prime[maxn];//表示第几个质数。
bool vis[maxn] = {0, 1};//判断是否为质数,如果是则为0
int tot;
int main()
{
int n, m;
scanf("%d", &n);
for (int i = 2; i <= n; i++)
{
if (!vis[i])
prime[++tot] = i;
for (int j = 1; j <= tot, prime[j] * i <= n; j++)
{
vis[i * prime[j]] = 1;
if (!(i % prime[j]))//如果i能被prime[j]整除的话
break;
}
}
}

我们分析上面的代码,唯一可能难理解的地方就是\(break\)的那个判断了。这也是欧拉筛的精髓所在,如果已经超出了范围需要退出,这个自不必多说,但是,如果\(i\%prime[j]==0\)时,为啥就要退出呢

原理:

首先我们需要明白一些性质:

  1. 我们筛素数时应该从小到大筛,方便后面优化时间,所以源代码循环中\(i\)是从小到大筛的。

  2. 任何一个合数都可以表示为几个质数的乘积。所以我们想要在线性时间内筛素数的话,每个合数应该都被它的最小质因子筛去。

  3. 当\(i\%prime[j]==0\)时,则\(i\)为\(prime[j]\)的倍数,设\(i\)为\(prime[j]*k\),如果继续向下筛的话,下一个要筛的数是\(i*prime[j+1]=prime[j]*k*prime[j+1]\);此时要筛的数即\(i*prime[j+1]\)就已经被\(prime[j]\)筛去了,而根据性质1,\(prime[j]\)要比\(i\)小(因为\(i\)是\(prime[tot]\))。

    因此时间复杂度是线性的。

欧拉筛

欧拉筛其实跟线性筛差不了多少。

首先我们应该熟记欧拉函数的性质。并且这种筛法还可以进行线性求积性函数。

原理

  1. 我们看线性筛的第二个性质,欧拉函数是不是也满足,因此防止多余的运算

代码

    memset(isprime, 1, sizeof(isprime));
isprime[1] = false;
for (int i = 2; i <= listsize; i++)
{
if (isprime[i])
{
prime[++primesize] =i;
phi[i] = i - 1;//性质1
}
for (int j = 1; j <= primesize && i * prime[j] <= listsize; j++)
{
isprime[i * prime[j]] = false;
if (i % prime[j] == 0)//说明他们之间不互质,且i是prime[j]的倍数,就可以用性质3.
{
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1)//即phi[j];因为他们互质,所以可用性质1,2
}
}

欧拉筛,线性筛,洛谷P2158仪仗队的更多相关文章

  1. 【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

    题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 ...

  2. 欧拉筛法模板and 洛谷 P3383 【模板】线性筛素数(包括清北的一些方法)

    题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入格式 第一行包含两个正整数N.M,分别表示查询的范围和查询的个数. 接下来M行每行包含一个不小于1 ...

  3. 【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

    向大(hei)佬(e)势力学(di)习(tou) Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪 ...

  4. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  5. 【BZOJ2401】陶陶的难题I 欧拉函数+线性筛

    [BZOJ2401]陶陶的难题I 题意:求,n<=1000000,T<=100000 题解:直接做是n*sqrt(n)的,显然会TLE,不过这题a和b都是循环到n,那么就可以进行如下的神奇 ...

  6. 洛谷 - P2158 - 仪仗队 - 欧拉函数

    https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要 ...

  7. HDU6434 Count【欧拉函数 线性筛】

    HDU6434 I. Count T次询问,每次询问\(\sum_{i=1}^{n}\sum_{j=1}^{n-1}[gcd(i-j,i+j)=1]\) \(T\le 1e5, n \le 2e7\) ...

  8. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  9. 洛谷 P2158 仪仗队

    欧拉函数入门题... 当然如果有兴趣也可以用反演做...类似这题 题意就是求,方阵从左下角出发能看到多少个点. 从0开始给坐标 发现一个点能被看到,那么横纵坐标互质. 然后求欧拉函数的前缀和,* 2 ...

随机推荐

  1. Item 22: 当使用Pimpl机制时,在实现文件中给出特殊成员函数的实现

    本文翻译自<effective modern C++>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 如果你曾经同过久的编译时间斗争过,那么你肯定对Pi ...

  2. mysql安装设置mysql字符集utf8及修改密码

    MySQL的下载,建议下载MySQL的解压缩版本 MySQL官网下载推荐别下最新版本的原因是因为很多之前用的jar包和工具类不兼容最新版本的 可以下5.多的和六点多的 这样的压缩包解压再配置就行了 安 ...

  3. PS滤镜给城市夜空照片添加满天星

    原图 一.新建空白图层. 二.填充黑色(编辑→填充). 三.转换为智能对象. 四.添加杂色(滤镜→杂色→添加杂色). 五.使用高斯模糊(滤镜→模糊→高斯模糊). 六.如果你想再次修改模糊效果,可双击该 ...

  4. Oss文件存储

    包含文件的上传下载和生成临时的url # -*- coding: utf-8 -*- import os import oss2 import configparser from Config imp ...

  5. pinpoint vs druid

    主流Java数据库连接池分析(C3P0,DBCP,TomcatPool,BoneCP,Druid) - ppjj - 博客园 https://www.cnblogs.com/nizuimeiabc1/ ...

  6. Linux reboot与init 6区别

    Reboot与init 6的区别 - flyingcloud_2008的专栏 - CSDN博客https://blog.csdn.net/flyingcloud_2008/article/detail ...

  7. Oracle SQL优化原则

    原文:http://bbs.landingbj.com/t-0-240353-1.html 1.选用适合的 ORACLE 优化器 2.访问 Table 的方式 3.共享SQL语句 共享的语句必须满足三 ...

  8. Oracle 表空间的创建与管理

    Oracle数据库创建之后有一些默认的表空间随之被创建,查询数据字典 dba_data_files 可以得到数据库当前的所有表空间信息. select * from v$tablespace; sel ...

  9. flutter中使用svg

    dependencies: flutter_svg: ^0.12.1 flutter packages get import 'package:flutter_svg/flutter_svg.dart ...

  10. Python创建virtualenv(虚拟环境)方法

    本文目录 一 前言 二 通过virtualenv软件创建 三 在pycharm下创建 新建项目 四 已有项目使用和创建虚拟环境 五 参数说明 一 前言 需求:        --公司之有一台服务器   ...