类型:单调队列

传送门:>Here<

题意:有$N$只蚯蚓,每秒都会伸长$q$。每一次都会有人选出最长的一条切成两半,长度分别是$\left \lfloor px \right \rfloor$和$x - \left \lfloor px \right \rfloor$ 询问每一秒最长的蚯蚓被切前的长度,以及$m$秒后每条蚯蚓的长度(从大到小排序)

解题思路

NOIp的subtask还是非常良心的。于是决定不看题解开始干……

看完题目,花了10分钟打了一个超级暴力模拟,35分get 然后发现有60分是$q=0$的情况……这不是就是一个裸的堆吗?打了15分钟,50分get(为什么只有50……) 然后想了很久没思路,瞟了一眼题解一眼就看到去减长度而不用管加,赶紧开始打调试近40分钟后85分get 然后就开始看题解打正解了……正解也调了20分钟左右 最终的AC代码再交一次竟然变成了90 又交一次变成了95 再交一次又100了……洛谷的评测机也不是很稳定啊,这题还是有点卡常

先来看看85分怎么拿。85分的写法在思想上还是很重要的——蚯蚓每秒增长$q$,可以看做是被切的蚯蚓减去$q$。因此我们可以维护一个堆,这样堆的内部就不需要反复更新。但是细节要注意,选择切割的蚯蚓长度应该拿真实的长度来算

然后来看正解。很容易发现,对于两条蚯蚓$x,y$,如果$x>y$,则$x$肯定会先被切掉。不妨设$x$被切掉以后变为$\{a_1, b_1\}$,$y$被切后变为$\{a_2, b_2\}$

由于$y$肯定在$x$被切后若干秒被切,不妨设为$t$秒,则那时四条分出来的小蚯蚓的长度是可以表示的。我们希望能够证明到那时$a_1 > a_2, b_1 > b_2$。我们先来证明$a_1>a_2$,$b$也类似$$a_1 = a_1 + q*t =\left \lfloor px \right \rfloor + q*t$$$$a_2 = \left \lfloor p(y+q*t) \right \rfloor$$则$$a_1-a_2=\left \lfloor px \right \rfloor + q*t-\left \lfloor p(y+q*t) \right \rfloor$$去掉向下取整符号并不会影响答案,因此$$a_1-a_2=p*x+q*t-p*y-p*q*t$$整理得$$a_1-a_2=p(x-y)+q*t(1-p)>0$$故$$a_1>a_2$$

因此我们得出结论:一条蚯蚓如果比另一条蚯蚓早被切,那么它分出来的两条蚯蚓也永远比后分出来的两条蚯蚓要长

于是我们可以考虑维护三个队列$q_1,q_2,q_3$,$q_1$中储存没被切过的蚯蚓,$q_2$中储存切出来的左半条,$q_3$表示右半条。要求队列单调不上升,每一次取出三个队列的队头中的最大值即为所有蚯蚓中最长的,切成两半后分别塞到$q_2,q_3$的队尾。由于刚才证明了后切的一定要短,所以插入队尾后单调性依然满足。故这样的做法是正确的

Code

cur=-INF而不能是-1,因为负数有可能减到很大

/*By DennyQi 2018.8.15*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) + (x << ) + c - '', c = getchar(); return x * w;
}
double p;
int N,M,Q,U,V,T,_mx,pos,tmp,x,y,cur,top;
int q[][MAXN],h[],t[],a[MAXN];
inline bool comp(const int& a, const int& b){ return a>b; }
int main(){
N=r,M=r,Q=r,U=r,V=r,T=r;
p = (double)(U) / (double)(V);
for(int i = ; i <= N; ++i) a[i] = r;
h[] = h[] = h[] = ;
q[][] = q[][] = -INF;
sort(a+,a+N+,comp);
for(int i = ; i <= N; ++i) q[][++t[]] = a[i];
for(int _t = ; _t <= M; ++_t){
cur = -INF;
for(int i = ; i <= ; ++i){
if(h[i] > t[i]) continue;
if(q[i][h[i]] > cur){ cur = q[i][h[i]]; pos = i; }
}
if(_t % T == ) printf("%d ", cur+(_t-)*Q);
++h[pos];
x = (cur+(_t-)*Q) * p, y = (cur+(_t-)*Q) - x;
q[][++t[]] = x-_t*Q, q[][++t[]] = y-_t*Q;
}
puts("");
for(int i = ; i <= ; ++i)
for(int j = h[i]; j <= t[i]; ++j) a[++top] = q[i][j];
sort(a+,a+top+,comp);
for(int i = ; i <= top; ++i)
if(i % T == ) printf("%d ", a[i]+M*Q);
return ;
}

[NOIp2016] 蚯蚓的更多相关文章

  1. [Noip2016]蚯蚓 D2 T2 队列

    [Noip2016]蚯蚓 D2 T2 Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯 ...

  2. 【BZOJ】4721: [Noip2016]蚯蚓 / 【洛谷】P2827 蚯蚓(单调队列)

    Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮 ...

  3. NC16430 [NOIP2016]蚯蚓

    NC16430 [NOIP2016]蚯蚓 题目 题目描述 本题中,我们将用符号 \(\lfloor c \rfloor\) 表示对 c 向下取整,例如:\(\lfloor 3.0 \rfloor = ...

  4. 【bzoj4721】[Noip2016]蚯蚓

    题目描述 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓.蛐 ...

  5. 【uoj264】 NOIP2016—蚯蚓

    http://uoj.ac/problem/264 (题目链接) 题意 n条蚯蚓,时间为m.每单位时间要可以将最长的蚯蚓切成len/2和len-len/2两份,长度为0的蚯蚓不会消失,因为每单位时间所 ...

  6. BZOJ4721 [Noip2016]蚯蚓

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  7. luogu2827 [NOIp2016]蚯蚓 (模拟)

    可以直观地想到用优先队列来做,但数据范围是O(n)的 然后我们发现,因为我们每次挑出来的蚯蚓是单调的,所以把每个切成两段后,那两段也是对应单调的 也就是说,算上最一开始的蚯蚓,我们一共维护三个队列,三 ...

  8. [NOIp2016]蚯蚓 (队列)

    #\(\color{red}{\mathcal{Description}}\) LInk 这道题是个\(zz\)题 #\(\color{red}{\mathcal{Solution}}\) 我们考虑如 ...

  9. 【bzoj4721】[Noip2016]蚯蚓 乱搞

    题目描述 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓.蛐 ...

随机推荐

  1. HDU 5023线段树区间染色,统计区间内颜色个数

    这个也是一个线段树的模板 #include<iostream> #include<string.h> #include<algorithm> #include< ...

  2. 移动web、webApp、混合APP、原生APP、androd H5混合开发 当无网络下,android怎么加载H5界面

    PhoneGap是一个采用HTML,CSS和JavaScript的技术,创建移动跨平台移动应用程序的快速开发平台.它使开发者能够在网页中调用IOS,Android,Palm,Symbian,WP7,W ...

  3. SVN插件和Tomcat插件地址

    SVN插件: http://subclipse.tigris.org/update_1.8.x Tomcat插件: http://tomcatplugin.sf.net/update 备注:如果svn ...

  4. bug总结

    1.被除数为0 2.Java 空指针异常(java.lang.NullPointerException) 即对象没有进行实例化便进行了使用.实例化的意义,就是将对象实例的地址赋值给对象符号. 比如 S ...

  5. message:GDI+ 中发生一般性错误。

    图片类型的文件保存的时候出了问题,可能是路径出错,也可能是保存到的文件夹不存在导致(发布项目的时候如果文件夹是空的,文件夹将不存在)

  6. [转帖]csdn windows 下载整理.

    特别说明:本帖不提供任何密钥或激活方法,请大家也不要在帖内回复或讨论涉及版权的相关内容,仅提供原版ISO下载链接 https://bbs.csdn.net/topics/391111024?list= ...

  7. 你不知道的JavaScript——this词法

    https://www.cnblogs.com/hutaoer/p/3423782.htmlhttps://www.cnblogs.com/vicky-li/p/8669549.htmlhttps:/ ...

  8. mapreduce join

    MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapredu ...

  9. Prism框架研究(一)

    从今天起开始写一个Prism框架的学习博客,今天是第一篇,所以从最基本的一些概念开始学习这个基于MVVM的框架的学习,首先看一下Prism代表什么,这里引用一下比较官方的英文解释来看一下:Prism ...

  10. 插件 DataTable 创建列表 render参数的详解与如何传递本行数据id

    1.首先 导入DataTable 的插件 2.定义表结构: HTML: <table> <thead> <tr> <th>id</th> & ...