题目描述

给一棵树,每条边有权。求一条简单路径,权值和等于 K,且边的数量最小。

题解

比较明显需要用到点分治,我们定义\(d\)数组表示当前节点到根节点\(rt\)之间有多少个节点,也可以表示有多少条边,然后我们在定义\(dis\)表示当前节点到根节点\(rt\)的距离,那么我们就可以得到\(ans=min(ans,d[u]+t[k-dis[u]])\),这个方程还是比较容易的。
但是这道题目不满足状态可减性,说的明白一点就是答案和答案之间无法相减,那么点分治的容斥原理处理就可以变成将原来没有访问过得节点的答案都变成\(inf\),这样我们算的时候就不会把这些重复部分算多次。

ac代码

# include <cstdio>
# include <cstring>
# include <algorithm>
# include <ctype.h>
# include <iostream>
# include <cmath>
# include <map>
# include <vector>
# include <queue>
# define LL long long
# define ms(a,b) memset(a,b,sizeof(a))
# define ri (register int)
# define inf (0x3f3f3f3f)/3
# define pb push_back
# define fi first
# define se second
# define pii pair<int,int>
# define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
inline int gi(){
    int w=0,x=0;char ch=0;
    while(!isdigit(ch)) w|=ch=='-',ch=getchar();
    while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    return w?-x:x;
}
# define N 1000005
struct edge{
    int to,nt,w;
}E[N<<1];
int H[N],cnt,n,k,rt,sum,mx,sz[N],ans,mxs[N],d[N],dis[N],t[N];
bool vis[N];
void addedge(int u,int v,int w){
    E[++cnt]=(edge){v,H[u],w}; H[u]=cnt;
}
void get_root(int u,int fa){
    sz[u]=1; mxs[u]=-1;
    for (int e=H[u];e;e=E[e].nt){
        if (vis[E[e].to]||E[e].to==fa) continue;
        get_root(E[e].to,u);
        sz[u]+=sz[E[e].to];
        mxs[u]=max(mxs[u],sz[E[e].to]);
    }
    mxs[u]=max(sum-sz[u],mxs[u]);
    if (mxs[u]<mx) mx=mxs[u],rt=u;
}
void calc(int u,int fa){
    if (dis[u]<=k) ans=min(ans,d[u]+t[k-dis[u]]);//如果当前的距离是小于k的,那么就说明可能可以更新答案
    for (int e=H[u];e;e=E[e].nt){
        if (E[e].to==fa||vis[E[e].to]) continue;
        d[E[e].to]=d[u]+1;
        dis[E[e].to]=dis[u]+E[e].w;
        calc(E[e].to,u);
    }
}
void update(int u,int fa,bool fg){//更新边上的答案
    if (dis[u]<=k) {
        if (fg) t[dis[u]]=min(t[dis[u]],d[u]);//如果是访问过得,那么就直接更新
        else t[dis[u]]=inf;//如果没有访问过,那么就赋值成inf,防止重复
    }
    for (int e=H[u];e;e=E[e].nt){//继续更新边上的答案
        if (E[e].to==fa||vis[E[e].to]) continue;
        update(E[e].to,u,fg);
    }
}
void divide(int u){
    vis[u]=1; t[0]=0;
    for (int e=H[u];e;e=E[e].nt){
        if (vis[E[e].to]) continue;
        d[E[e].to]=1; dis[E[e].to]=E[e].w; calc(E[e].to,-1); update(E[e].to,-1,1);//计算全局的答案
    }
    for (int e=H[u];e;e=E[e].nt){//将所有没有访问过得答案还原,防止答案重复
        if (!vis[E[e].to]) update(E[e].to,-1,0);
    }
    for (int e=H[u];e;e=E[e].nt){//递归分治
        if (vis[E[e].to]) continue;
        mx=inf; sum=sz[E[e].to]; rt=0; get_root(E[e].to,-1); divide(rt);
    }
}
int main(){
    ms(t,inf); n=gi(),k=gi();
    for (int i=2;i<=n;i++){
        int u=gi(),v=gi(),w=gi();
        u++,v++;
        addedge(u,v,w); addedge(v,u,w);
    }
    sum=n; mx=inf; rt=-1; get_root(1,-1);
    ans=inf; divide(rt);
    printf("%d\n",(ans==inf)?(-1):(ans));
    return 0;
}

[luogu4149][bzoj2599][IOI2011]Race【点分治】的更多相关文章

  1. [bzoj2599][IOI2011]Race——点分治

    Brief Description 给定一棵带权树,你需要找到一个点对,他们之间的距离为k,且路径中间的边的个数最少. Algorithm Analyse 我们考虑点分治. 对于子树,我们递归处理,所 ...

  2. BZOJ2599:[IOI2011]Race(点分治)

    Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 Input 第一行 两个整数 n, k 第二 ...

  3. 【BZOJ-2599】Race 点分治

    2599: [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 2590  Solved: 769[Submit][Status ...

  4. BZOJ 2599: [IOI2011]Race( 点分治 )

    数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...

  5. [IOI2011]Race 点分治

    [IOI2011]Race LG传送门 点分治板子题. 直接点分治统计,统计的时候开个桶维护下就好了. 注(tiao)意(le)细(hen)节(jiu). #include<cstdio> ...

  6. bzoj2599/luogu4149 [IOI2011]Race (点分治)

    点分治.WA了一万年. 重点就是统计答案的方法 做法一(洛谷AC bzojWA 自测WA): 做点x时记到x距离为k的边数最小值为dis[k],然后对每一对有值的dis[i]和dis[K-i],给an ...

  7. bzoj2599: [IOI2011]Race(点分治)

    写了四五道点分治的题目了,算是比较理解点分治是什么东西了吧= = 点分治主要用来解决点对之间的问题的,比如距离为不大于K的点有多少对. 这道题要求距离等于K的点对中连接两点的最小边数. 那么其实道理是 ...

  8. 2019.01.09 bzoj2599: [IOI2011]Race(点分治)

    传送门 题意:给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. 思路: 考虑点分治如何合并. 我们利用树形dpdpdp求树的直径的方法,边dfsdfsdfs子树边统计答案即可. 代码: ...

  9. BZOJ2599 [IOI2011]Race 【点分治】

    题目 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 输入格式 第一行 两个整数 n, k 第二..n行 每行三个整 ...

随机推荐

  1. 使用队列queue实现一个简单的生产者消费者模型

    一.生产者消费者模型 我们去超市商店等地购买商品时,我们大部分人都会说自己是消费者,而超市的各大供货商.工厂等,自然而然地也就成了我们的生产者.如此一来,生产者有了,消费者也有了,那么将二者联系起来的 ...

  2. Java面试题详解二:java中的关键字

    一,final1.被final修饰的类不可以被继承2.被final修饰的方法不可以被重写3.被final修饰的变量不可以被改变  重点就是第三句.被final修饰的变量不可以被改变,什么不可以被改变呢 ...

  3. 多线程系列之五:Balking 模式

    一,什么是Balking模式 如果现在不合适执行这个操作,或者没必要执行这个操作,就停止处理,直接返回.在Balking模式中,如果守护条件不成立,就立即中断处理. 二,例子: 定期将当前数据内容写入 ...

  4. 配置SQLServer,允许远程连接

    需要别人远程你的数据库,首先需要的是在一个局域网内,或者连接的是同一个路由器,接下来就是具体步骤: (一)首先是要检查SQLServer数据库服务器中是否允许远程链接.其具体操作为: (1)打开数据库 ...

  5. java依赖的斗争:依赖倒置、控制反转和依赖注入

    控制反转(Inversion Of Controller)的一个著名的同义原则是由Robert C.Martin提出的依赖倒置原则(Dependency Inversion Principle),它的 ...

  6. npm --save-dev 和--save 参数的区别

    npm中的--save与--save-dev参数的区别 --save一般规定把产品运行时(或生产环境)需要的npm包存入到package.json的dependencies中: --save-dev则 ...

  7. CLOUD物料列表查询的一份跟踪

    SELECT * FROM (SELECT t0.FNUMBER fnumber, t0_L.FNAME fname, t0_L.FSPECIFICATION fspecification, t0.F ...

  8. springmvc配置文件

    1 springMVC的配置文件路径问题 https://www.cnblogs.com/ysloong/p/6071450.html

  9. JavaScript中forEach与each

    forEach是ES5中操作数组的一种方法,主要功能是遍历数组,例如: var arr = [1,2,3,4]; arr.forEach(alert); 等价于: var arr = [1, 2, 3 ...

  10. win10远程桌面连接提示身份验证错误,要求的函数不受支持的解决方案

    转自https://www.baidu.com/link?url=67JXh4h79mN47mEenuH_ElGkSh9_GdOiY-Xp9Ihw0_mQIZHrPx-HxY3EIm_nTZKPoRZ ...