Description

  “余”人国的国王想重新编制他的国家。他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成
员来管理。他的国家有n个城市,编号为1..n。一些城市之间有道路相连,任意两个不同的城市之间有且仅有一条
直接或间接的道路。为了防止管理太过分散,每个省至少要有B个城市,为了能有效的管理,每个省最多只有3B个
城市。每个省必须有一个省会,这个省会可以位于省内,也可以在该省外。但是该省的任意一个城市到达省会所经
过的道路上的城市(除了最后一个城市,即该省省会)都必须属于该省。一个城市可以作为多个省的省会。聪明的
你快帮帮这个国王吧!

Input

  第一行包含两个数N,B(1<=N<=1000, 1 <= B <= N)。接下来N-1行,每行描述一条边,包含两个数,即这
条边连接的两个城市的编号。

Output

  如果无法满足国王的要求,输出0。否则输出数K,表示你给出的划分方案中省的个数,编号为1..K。第二行输
出N个数,第I个数表示编号为I的城市属于的省的编号,第三行输出K个数,表示这K个省的省会的城市编号,如果
有多种方案,你可以输出任意一种。

Sample Input

8 2
1 2
2 3
1 8
8 7
8 6
4 6
6 5

Sample Output

3
2 1 1 3 3 3 3 2
2 1 8
 
思路:
在树上dfs从根节点往下遍历,如果遍历到某结点的几棵子树加起来大于B,那么就把这几棵子树里的点扔到一个块里面也就是归为一个省(因为计算子树大小是从下到上的所以不用担心大于3B),这个块的省会就是当前点,这样处理完后还会剩下一些大小小于B的子树,我们再进行一遍dfs,把这些树里的点扔到其他能扔的块里面去。
 
实现代码;
#include<bits/stdc++.h>
using namespace std;
const int M = 1e4+;
int n,B,tot,cnt,top;
int head[M],siz[M],gen[M],blo[M],q[M]; struct node{
int to,next;
}e[M]; void add(int u,int v){
e[++cnt].to = v;e[cnt].next = head[u];head[u] = cnt;
} void dfs(int u,int fa){
q[++top] = u;
for(int i = head[u];i;i=e[i].next){
int v = e[i].to;
if(v == fa) continue;
dfs(v,u);
if(siz[u] + siz[v] >= B){
siz[u] = ;
gen[++tot] = u;
while(q[top]!=u)
blo[q[top--]] = tot;
}
else
siz[u] += siz[v];
}
siz[u] ++;
} void dfs1(int u,int fa,int c){
if(blo[u]) c = blo[u];
else blo[u] = c;
for(int i = head[u];i;i=e[i].next){
int v = e[i].to;
if(v == fa) continue;
dfs1(v,u,c);
}
} int main()
{
int u,v;
scanf("%d%d",&n,&B);
if(n < B){
printf("0\n"); return ;
}
for(int i = ;i <= n;i ++){
scanf("%d%d",&u,&v);
add(u,v); add(v,u);
}
dfs(,);
if(tot == ) gen[++tot] = ;
dfs1(,,tot);
printf("%d\n",tot);
for(int i = ;i <= n;i ++)
printf("%d ",blo[i]);
printf("\n");
for(int i = ;i <= tot;i ++)
printf("%d ",gen[i]);
printf("\n");
return ;
}

bzoj 1086: [SCOI2005]王室联邦 (分块+dfs)的更多相关文章

  1. Bzoj 1086: [SCOI2005]王室联邦(分块)

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec Memory Limit: 162 MBSec Special Judge Submit: 1557 Solved: 9 ...

  2. BZOJ 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1399  Solved: ...

  3. 【块状树】BZOJ 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 826  Solved:  ...

  4. [BZOJ 1086] [SCOI2005] 王室联邦 【树分块】

    题目链接:BZOJ - 1086 题目分析 这道题要求给树分块,使得每一块的大小在 [B, 3B] 之间,并且可以通过一个块外的节点(块根)使得整个块联通. 那么我们使用一种 DFS,维护一个栈,DF ...

  5. BZOJ 1086: [SCOI2005]王室联邦 [树上分块]

    portal 题意: 树分成若干块大小在$[s,3s]$之间,每块有一个根(可以不在块内),所有点到根路径上的点都必须在块内 据说这是一个保证了块大小直径个数的科学分块方法,貌似只有本题有用  我错了 ...

  6. BZOJ 1086 [SCOI2005]王室联邦 ——DFS

    手把手教你树分块系列. 只需要记录一个栈,如果等于B的情况就弹栈,令省会为当前节点. 然后把待分块的序列不断上传即可. 考虑到有可能弹出不是自身节点的子树节点,所以记录一下当前的栈底. DFS即可 # ...

  7. bzoj 1086 [SCOI2005]王室联邦——思路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1086 于是去看了题解. 要回溯的时候再把自己加进栈里判断.这样才能保证剩下的可以通过自己连到 ...

  8. 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1554  Solved: ...

  9. BZOJ1086 [SCOI2005]王室联邦 【dfs + 贪心】

    题目 "余"人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成 员来管理.他的国家有n个城市,编号为1..n.一些城市之间有道路相连,任意两 ...

随机推荐

  1. Ordering Tasks

    链接 [https://vjudge.net/contest/281085#problem/D] 题意 有n个任务,有M个对先后顺序 然你输出最后的完成任务的顺序,有多种可能输出一种即可 分析 裸的拓 ...

  2. redis的spring的xml配置

    <!-- 集群版配置 --> <bean id="jedisCluster" class="redis.clients.jedis.JedisClust ...

  3. 使用Vue自己做一个简单的MarkDown在线编辑器

    1.首先要下载mark组件. npm install marked --save 2.在Vcontent.vue中简单写一些样式. <template> <div class=&qu ...

  4. Linux awk使用方法~~整理

    目录 awk行处理方式 awk命令格式 命令行格式 脚本格式 命令行格式——基本格式 awk内置变量 awk内置函数 测试数据 awk变量和函数使用实例 逻辑判断式 扩展格式 BEGIN 和 END ...

  5. # 【Python3练习题 008】判断101-200之间有多少个素数,并输出所有素数。

    lst = []for i in range(100): #建立 101-200 的列表 lst.append(101+i) for i in range(101, 201): #除数为 101-20 ...

  6. <c:forEach varStatus="status">中 varStatus的作用

    varStatus是<c:forEach>jstl循环标签的一个属性,varStatus属性. varStatus=“status”事实上定义了一个status名的对象作为varStatu ...

  7. 配置router列表

    import Vue from "vue"; import VueRouter from 'vue-router'; import Star from '../components ...

  8. Velocity之初印象

    Velocity 模板引擎介绍 在现今的软件开发过程中,软件开发人员将更多的精力投入在了重复的相似劳动中.特别是在如今特别流行的 MVC 架构模式中,软件各个层次的功能更加独立,同时代码的相似度也更加 ...

  9. java lang(Thread) 和 Runable接口

    public interface Runnable { public abstract void run(); } public class Thread implements Runnable { ...

  10. PHP二维数组(或任意维数组)转换成一维数组的方法汇总(实用)

    目录 1 array_reduce函数法 2 array_walk_recursive函数法 3 array_map函数法 假设有下面一个二维数组: $user = array( '0' => ...