【CF768G】The Winds of Winter 可持久化线段树 DFS序
题目大意
给定一棵\(n\)个点的树,对于树上每个结点,将它删去,然后可以将得到的森林中任意一个点与其父亲断开并连接到另一颗树上,对每一个点求出森林中所有树\(size\)最大值的最小值。
\(n\leq 100000\)
题解
首先用DFS序+可持久化线段树求出删掉这个点后剩下的联通块的大小的最大值\(max\)、次大值\(sec\)、最小值\(min\)。这里要维护两棵可持久化线段树,一棵是DFS序前缀的,一棵是从根到每个点的。
那么肯定是在最大的连通块上切下一块接到最小的连通块上。
假设切下的大小为\(x\),那么答案是\(\max(max-x,min+x,sec)\)。这个的图像是带一个向下的尖角的,这个尖角的位置为\(\frac{max+min}{2}\)。所以我们要切下来的\(x\)就是\(\frac{max-min}{2}\)。我们只需要在对应的可持久化线段树上找这个值的前驱和后继并统计答案。
切下来的部分有三种可能:
1.在\(x\)的子树内,可以直接统计答案
2.在\(x\)的子树外且不包含\(x\)到根的点,可以直接统计答案
3.在\(x\)的子树外切包含根到\(x\)的点,查询到的子树大小要减掉\(size_x\)
时间复杂度:\(O(n\log n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<list>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
namespace sgt
{
int rt1[100010];
int rt2[100010];
struct node
{
int lc,rc;
int s;
node()
{
lc=rc=s=0;
}
};
node a[10000010];
int cnt=0;
int insert(int p1,int x,int l,int r)
{
int p=++cnt;
a[p]=a[p1];
a[p].s++;
if(l==r)
return p;
int mid=(l+r)>>1;
if(x<=mid)
a[p].lc=insert(a[p].lc,x,l,mid);
else
a[p].rc=insert(a[p].rc,x,mid+1,r);
return p;
}
int suf(int p1,int p2,int p3,int p4,int x,int l,int r)//p1+p3-p2-p4
{
int s=a[p1].s+a[p3].s-a[p4].s-a[p2].s;
if(!s)
return 0x3fffffff;
if(l==r)
return l;
int mid=(l+r)>>1;
int ls=a[a[p1].lc].s+a[a[p3].lc].s-a[a[p4].lc].s-a[a[p2].lc].s;
if(x<=mid&&ls)
{
int lans=suf(a[p1].lc,a[p2].lc,a[p3].lc,a[p4].lc,x,l,mid);
if(lans!=0x3fffffff)
return lans;
}
return suf(a[p1].rc,a[p2].rc,a[p3].rc,a[p4].rc,x,mid+1,r);
}
int pre(int p1,int p2,int p3,int p4,int x,int l,int r)
{
int s=a[p1].s+a[p3].s-a[p4].s-a[p2].s;
if(!s)
return 0;
if(l==r)
return l;
int mid=(l+r)>>1;
int rs=a[a[p1].rc].s+a[a[p3].rc].s-a[a[p4].rc].s-a[a[p2].rc].s;
if(x>mid&&rs)
{
int rans=pre(a[p1].rc,a[p2].rc,a[p3].rc,a[p4].rc,x,mid+1,r);
if(rans)
return rans;
}
return pre(a[p1].lc,a[p2].lc,a[p3].lc,a[p4].lc,x,l,mid);
}
int getmax(int p1,int p2,int p3,int p4,int l,int r)
{
int s=a[p1].s+a[p3].s-a[p4].s-a[p2].s;
if(!s)
return 0;
if(l==r)
return l;
int mid=(l+r)>>1;
int rs=a[a[p1].rc].s+a[a[p3].rc].s-a[a[p4].rc].s-a[a[p2].rc].s;
if(rs)
return getmax(a[p1].rc,a[p2].rc,a[p3].rc,a[p4].rc,mid+1,r);
return getmax(a[p1].lc,a[p2].lc,a[p3].lc,a[p4].lc,l,mid);
}
int getmin(int p1,int p2,int p3,int p4,int l,int r)
{
int s=a[p1].s+a[p3].s-a[p4].s-a[p2].s;
if(!s)
return 0x3fffffff;
if(l==r)
return l;
int mid=(l+r)>>1;
int ls=a[a[p1].lc].s+a[a[p3].lc].s-a[a[p4].lc].s-a[a[p2].lc].s;
if(ls)
return getmin(a[p1].lc,a[p2].lc,a[p3].lc,a[p4].lc,l,mid);
return getmin(a[p1].rc,a[p2].rc,a[p3].rc,a[p4].rc,mid+1,r);
}
}
using sgt::rt1;
using sgt::rt2;
using sgt::insert;
using sgt::suf;
using sgt::pre;
using sgt::getmax;
using sgt::getmin;
list<int> l[100010];
int f[100010];
int st[100010];
int ed[100010];
int s[100010];
int w[100010];
int ti;
int n;
void dfs1(int x)
{
st[x]=++ti;
w[ti]=x;
s[x]=1;
for(auto v:l[x])
{
dfs1(v);
s[x]+=s[v];
}
ed[x]=ti;
}
int update(int &a,int &b,int &c)
{
if(c>=a)
{
b=a;
a=c;
return 1;
}
else
{
b=max(b,c);
return 2;
}
return 0;
}
int main()
{
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
scanf("%d",&n);
int rt,x,y;
int i;
for(i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
if(x)
{
l[x].push_back(y);
f[y]=x;
}
else
rt=y;
}
dfs1(rt);
for(i=1;i<=n;i++)
{
x=w[i];
rt2[x]=insert(rt2[f[x]],s[x],1,n);
rt1[i]=insert(rt1[i-1],s[x],1,n);
}
for(i=1;i<=n;i++)
{
int mx=0,sec=0,mi=0x7fffffff;
int s1,s2,s3,s4,ans;
int mv;
for(auto v:l[i])
{
s1=s[v];
if(update(mx,sec,s1)==1)
{
s4=1;
mv=v;
}
mi=min(mi,s1);
}
s1=n-s[i];
if(s1)
{
if(update(mx,sec,s1)==1)
s4=2;
mi=min(mi,s1);
}
ans=0x7fffffff;
int mid=(mi+mx+1)>>1;
int s5=mx-mid;
if(i==1)
int xxx=1;
ans=min(ans,mx);
if(s4==1)
{
s1=pre(rt1[ed[mv]],rt1[st[mv]-1],0,0,s5,1,n);
s2=suf(rt1[ed[mv]],rt1[st[mv]-1],0,0,s5,1,n);
ans=min(ans,max(sec,max(mi+s1,mx-s1)));
ans=min(ans,max(sec,max(mi+s2,mx-s2)));
}
else if(s4==2)
{
s1=pre(rt2[f[i]],0,0,0,s5+s[i],1,n);
s2=suf(rt2[f[i]],0,0,0,s5+s[i],1,n);
if(s1)
s1-=s[i];
if(s2!=0x3fffffff)
s2-=s[i];
ans=min(ans,max(sec,max(mi+s1,mx-s1)));
ans=min(ans,max(sec,max(mi+s2,mx-s2)));
s1=pre(rt1[st[i]-1],rt1[ed[i]],rt1[n],rt2[f[i]],s5,1,n);
s2=suf(rt1[st[i]-1],rt1[ed[i]],rt1[n],rt2[f[i]],s5,1,n);
ans=min(ans,max(sec,max(mi+s1,mx-s1)));
ans=min(ans,max(sec,max(mi+s2,mx-s2)));
}
printf("%d\n",ans);
}
return 0;
}
【CF768G】The Winds of Winter 可持久化线段树 DFS序的更多相关文章
- Tsinsen A1505. 树(张闻涛) 倍增LCA,可持久化线段树,DFS序
题目:http://www.tsinsen.com/A1505 A1505. 树(张闻涛) 时间限制:1.0s 内存限制:512.0MB 总提交次数:196 AC次数:65 平均分: ...
- BZOJ3653谈笑风生——可持久化线段树+dfs序
题目描述 设T 为一棵有根树,我们做如下的定义: ? 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称“a比b不知道 高明到哪里去了”. ? 设a 和 b 为 T 中的两个不同节点.如果 a ...
- BZOJ_3252_攻略_线段树+dfs序
BZOJ_3252_攻略_线段树+dfs序 Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏< ...
- 【XSY2534】【BZOJ4817】树点涂色 LCT 倍增 线段树 dfs序
题目大意 Bob有一棵\(n\)个点的有根树,其中\(1\)号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜 ...
- 【bzoj4817】树点涂色 LCT+线段树+dfs序
Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. ...
- S - Query on a tree HDU - 3804 线段树+dfs序
S - Query on a tree HDU - 3804 离散化+权值线段树 题目大意:给你一棵树,让你求这棵树上询问的点到根节点直接最大小于等于val的长度. 这个题目和之前写的那个给你一棵 ...
- HDU 5692 线段树+dfs序
Snacks Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序
3779: 重组病毒 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 224 Solved: 95[Submit][Status][Discuss] ...
- 【BZOJ-3306】树 线段树 + DFS序
3306: 树 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 792 Solved: 262[Submit][Status][Discuss] De ...
随机推荐
- dcoker搭建wordpress
下载wordpress镜像 docker pull wordpress 创建wordpress容器 docker run -d --name wordpress --link mysql:mysql ...
- python3 pip 安装Scrapy在win10 安装报错error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools": http://landinghub.visualstudio.com/visual-cpp-build-tools
问题描述 当前环境win10,python_3.6.1,64位. 在windows下,在dos中运行pip install Scrapy报错: building 'twisted.test.raise ...
- Floyd最短路(带路径输出)
摘要(以下内容来自百度) Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似. 该算法名称以创始人之一.1978年图灵奖获得者. ...
- 牛客练习赛B题 筱玛的排列(找递推规律)
链接:https://ac.nowcoder.com/acm/contest/342/B来源:牛客网 筱玛的排列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语 ...
- 泛函p121可分Hilbert空间都同构于l^2
如何理解最后面两句话, L^2与l^2同构 L^2里面 有理系数多项式 是可数稠密子集 所以L^2可分 可分Hilbert空间都同构于 l^2 傅里叶级数是一个稠密的子集
- 敏捷开发、DevOps相关书籍——书单
自己瞎整理的一些书单,都是豆瓣评分比较高的书,可以作为选择的一个参考. 书名 豆瓣链接 持续交付:发布可靠软件的系统方法 https://book.douban.com/subject/6862062 ...
- #Leetcode# 633. Sum of Square Numbers
https://leetcode.com/problems/sum-of-square-numbers/ Given a non-negative integer c, your task is to ...
- Python3练习题 022:用递归函数反转字符串
方法一 str = input('请输入若干字符:') def f(x): if x == -1: return '' else: return s ...
- JS实用小函数 数据是否合法或存在 获取当前日期时间
1.判断数据是否合法或存在 //判断数据是否合法或存在 function isNotNull(data) { if(data === "" || data === undefine ...
- 对于vue和react“页面间”传递数据的理解误区
前言 如果我们想要实现多个标签页之间的通信,可以使用localStorage.cookie等,但是能不能用vue或react呢? 结论 答案是NO,因为vue和react虽然可以在“多个”页面之间传递 ...