CodeForces621E 快速矩阵幂优化dp
有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去做的,正如快速矩阵幂最终会计算出答案一样,我们也最终会在这些不明意义的事情中实现目标。
题意:有 bb 个格子,每个格子有 nn 个数字,各个格子里面的数字都是相同的. 求从 bb 个格子中各取一个数字, 构成一个 bb 位数, 使得这个 bb 位数模 xx 为 kk 的方案数(同一格子内相同的数字算不同方案)
由于每个格子的数都是0-9的,我们首先可以想到用num存所有数字的数量。
一个简单的思想是dp每一位数字的余数,dp[i][j]表示遍历到i的时候有余数j的可能性数量。
写出状态转移方程 dp[i][j * 10 + k] += dp[i - 1][j] * num[k]
但是i的数量大到1e9,显然是不可能的,事实上我们可以考虑用快速矩阵幂来优化,
用一个大小为x * x的矩阵来表示从一个余数到另一个余数的可能情况直接上快速矩阵幂即可。
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int maxm = 5e4 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,B,K,X;
int a[maxm];
int num[];
struct Mat{
LL a[maxn][maxn];
void init(){
Mem(a,);
}
};
Mat operator *(Mat a,Mat b){
Mat ans; ans.init();
for(int i = ; i < X; i ++){
for(int j = ; j < X; j ++){
for(int k = ; k < X; k ++){
ans.a[i][j] = (ans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
}
}
}
return ans;
}
int main()
{
scanf("%d%d%d%d",&N,&B,&K,&X);
For(i, , N){
scanf("%d", &a[i]);
a[i] %= X;
num[a[i]]++;
}
Mat base,ans; base.init(); ans.init();
ans.a[][] = ;
for(int i = ; i < X; i ++){
for(int j = ; j < ; j ++){
int to = (i * + j) % X;
base.a[i][to] += num[j];
}
}
while(B){
if(B & ) ans = ans * base;
base = base * base;
B >>= ;
}
Prl(ans.a[][K]);
#ifdef VSCode
system("pause");
#endif
return ;
}
CodeForces621E 快速矩阵幂优化dp的更多相关文章
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- Java大数——快速矩阵幂
Java大数——快速矩阵幂 今天做了一道水题,尽管是水题,但是也没做出来.最后问了一下ChenJ大佬,才慢慢的改对,生无可恋了.... 题目描述: 给a,b,c三个数字,求a的b次幂对c取余. 数据范 ...
- HDU - 6395 Sequence (分块+快速矩阵幂)
给定递推式: 求Fn. 分析:给出的公式可以用快速矩阵幂运算得到,但 P/n 整除对于不同的i,值是不同的. 可以根据P将3-n分成若干块,每块中P整除n的值是相同的.分块的时候要注意判断. 将每块的 ...
- 形态形成场(矩阵乘法优化dp)
形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)
哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...
随机推荐
- Lisp小程序,大作用,不该放弃!
从听说autolisp到现在已经20年了, 学了一点点, 可惜中间没能坚持下来, 放弃了! 今天在画图, 图纸是从revit转成dwg的, 其中有些文本的朝向是错误的, 如果手工旋转很是费事, ...
- MVC 动态菜单
直接上代码: 一,创建菜单 Action public ActionResult GetMenu() { //获取菜单 List<MenuItem> mainMenu = mm.GetMe ...
- LOJ2269 [SDOI2017] 切树游戏 【FWT】【动态DP】【树链剖分】【线段树】
题目分析: 好题.本来是一道好的非套路题,但是不凑巧的是当年有一位国家集训队员正好介绍了这个算法. 首先考虑静态的情况.这个的DP方程非常容易写出来. 接着可以注意到对于异或结果的计数可以看成一个FW ...
- HDOJ 5672//模拟
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5672 题意:有一个字符串S,字符串里面只包含小写字母,问有多少个子串里面有至少K个不同的字母: 思路:还是 ...
- zabbix 常用监控模板
以下为常用的服务监控,可直接通过zabbix的导入功能导入,做基本修改就可以使用nginx监控模板 <?xml version="1.0" encoding="UT ...
- Hdoj 2018.母牛的故事 题解
Problem Description 有一头母牛,它每年年初生一头小母牛.每头小母牛从第四个年头开始,每年年初也生一头小母牛.请编程实现在第n年的时候,共有多少头母牛? Input 输入数据由多个测 ...
- emwin之错误使用控件函数导致死机现象
@2018-10-15 导致死机的代码示例如下 /** * @brief widget ID define * @{ */ #define ID_WINDOW_0 (GUI_ID_USER + 0x0 ...
- shell中定义变量用双引号和单引号以及不用引号的区别
1. 单引号 使用单引号的情况下,不管里面的是否有变量或者其他的表达是都是原样子输出 2. 双引号 如果其定义变量的时候使用双引号的话,则里面的变量或者函数会通过解析,解析完成后再输出内容,而不是把双 ...
- Spring -- <mvc:annotation-driven />
<mvc:annotation-driven /> 会自动注册:RequestMappingHandlerMapping .RequestMappingHandlerAdapter 与Ex ...
- Building Microservices with Spring Boot and Apache Thrift. Part 2. Swifty services
http://bsideup.blogspot.com/2015/04/spring-boot-thrift-part2.html In previous article I showed y ...