有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去做的,正如快速矩阵幂最终会计算出答案一样,我们也最终会在这些不明意义的事情中实现目标。

题意:有 bb 个格子,每个格子有 nn 个数字,各个格子里面的数字都是相同的. 求从 bb 个格子中各取一个数字, 构成一个 bb 位数, 使得这个 bb 位数模 xx 为 kk 的方案数(同一格子内相同的数字算不同方案)

由于每个格子的数都是0-9的,我们首先可以想到用num存所有数字的数量。

一个简单的思想是dp每一位数字的余数,dp[i][j]表示遍历到i的时候有余数j的可能性数量。

写出状态转移方程 dp[i][j * 10 + k] += dp[i - 1][j] * num[k]

但是i的数量大到1e9,显然是不可能的,事实上我们可以考虑用快速矩阵幂来优化,

用一个大小为x * x的矩阵来表示从一个余数到另一个余数的可能情况直接上快速矩阵幂即可。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int maxm = 5e4 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,B,K,X;
int a[maxm];
int num[];
struct Mat{
LL a[maxn][maxn];
void init(){
Mem(a,);
}
};
Mat operator *(Mat a,Mat b){
Mat ans; ans.init();
for(int i = ; i < X; i ++){
for(int j = ; j < X; j ++){
for(int k = ; k < X; k ++){
ans.a[i][j] = (ans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
}
}
}
return ans;
}
int main()
{
scanf("%d%d%d%d",&N,&B,&K,&X);
For(i, , N){
scanf("%d", &a[i]);
a[i] %= X;
num[a[i]]++;
}
Mat base,ans; base.init(); ans.init();
ans.a[][] = ;
for(int i = ; i < X; i ++){
for(int j = ; j < ; j ++){
int to = (i * + j) % X;
base.a[i][to] += num[j];
}
}
while(B){
if(B & ) ans = ans * base;
base = base * base;
B >>= ;
}
Prl(ans.a[][K]);
#ifdef VSCode
system("pause");
#endif
return ;
}

CodeForces621E 快速矩阵幂优化dp的更多相关文章

  1. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  2. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  3. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  4. Java大数——快速矩阵幂

    Java大数——快速矩阵幂 今天做了一道水题,尽管是水题,但是也没做出来.最后问了一下ChenJ大佬,才慢慢的改对,生无可恋了.... 题目描述: 给a,b,c三个数字,求a的b次幂对c取余. 数据范 ...

  5. HDU - 6395 Sequence (分块+快速矩阵幂)

    给定递推式: 求Fn. 分析:给出的公式可以用快速矩阵幂运算得到,但 P/n 整除对于不同的i,值是不同的. 可以根据P将3-n分成若干块,每块中P整除n的值是相同的.分块的时候要注意判断. 将每块的 ...

  6. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  7. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

  8. 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)

    Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...

  9. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

随机推荐

  1. hdu-1686(kmp)

    题意:前面的都是废话...其实直接看输入要求和输出要求就可以了,就是给你两个字符串,问你第一个字符串在第二个字符串中出现几次: 解题思路:kmp... 代码: #include<iostream ...

  2. BZOJ4482[Jsoi2015]套娃——贪心+set

    题目描述 [故事背景] 刚从俄罗斯旅游回来的JYY买了很多很多好看的套娃作为纪念品!比如右 图就是一套他最喜欢的套娃J.JYY由于太过激动,把所有的套娃全 部都打开了.而由于很多套娃长得过于相像,JY ...

  3. BZOJ4519[Cqoi2016]不同的最小割——最小割树+map

    题目描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割.对于带权图来说,将 所有顶点处在 ...

  4. HDOJ5540 Secrete Master Plan

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5540 题目大意:给一个两个2*2的矩阵,第二个矩阵能不能通过旋转得到第一个矩阵 题目思路:模拟 #in ...

  5. genymotion ddms查看data等文件目录

    使用ADB shell 命令: 打开 Cmd  ,输入  ADB shell 命令后,回车(前提是你已经配置好了adb 的环境变量,跟配置Java的环境变量一样); 输入su回车,获取超级管理员权限 ...

  6. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  7. KVM环境安装macOS Sierra

    一.在macOS系统中生成ISO文件:1.在App Store中搜索.下载macOS Sierra系统. App Store --> macos --> macOS Sierra --&g ...

  8. 把 android 手机变成 web server (golang)

    配置 golang 开发环境 略 安装并初始化 gomobile go get golang.org/x/mobile/cmd/gomobile gomobile init 创建 beego 项目, ...

  9. js 获取对象属性个数

    js 获取对象属性个数 方法一: var attributeCount = function(obj) { var count = 0; for(var i in obj) { if(obj.hasO ...

  10. CSS解决文字超出显示省略号问题

    超出一行 white-space: nowrap; overflow: hidden; text-overflow: ellipsis; 超出多行 overflow: hidden; text-ove ...