有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去做的,正如快速矩阵幂最终会计算出答案一样,我们也最终会在这些不明意义的事情中实现目标。

题意:有 bb 个格子,每个格子有 nn 个数字,各个格子里面的数字都是相同的. 求从 bb 个格子中各取一个数字, 构成一个 bb 位数, 使得这个 bb 位数模 xx 为 kk 的方案数(同一格子内相同的数字算不同方案)

由于每个格子的数都是0-9的,我们首先可以想到用num存所有数字的数量。

一个简单的思想是dp每一位数字的余数,dp[i][j]表示遍历到i的时候有余数j的可能性数量。

写出状态转移方程 dp[i][j * 10 + k] += dp[i - 1][j] * num[k]

但是i的数量大到1e9,显然是不可能的,事实上我们可以考虑用快速矩阵幂来优化,

用一个大小为x * x的矩阵来表示从一个余数到另一个余数的可能情况直接上快速矩阵幂即可。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int maxm = 5e4 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,B,K,X;
int a[maxm];
int num[];
struct Mat{
LL a[maxn][maxn];
void init(){
Mem(a,);
}
};
Mat operator *(Mat a,Mat b){
Mat ans; ans.init();
for(int i = ; i < X; i ++){
for(int j = ; j < X; j ++){
for(int k = ; k < X; k ++){
ans.a[i][j] = (ans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
}
}
}
return ans;
}
int main()
{
scanf("%d%d%d%d",&N,&B,&K,&X);
For(i, , N){
scanf("%d", &a[i]);
a[i] %= X;
num[a[i]]++;
}
Mat base,ans; base.init(); ans.init();
ans.a[][] = ;
for(int i = ; i < X; i ++){
for(int j = ; j < ; j ++){
int to = (i * + j) % X;
base.a[i][to] += num[j];
}
}
while(B){
if(B & ) ans = ans * base;
base = base * base;
B >>= ;
}
Prl(ans.a[][K]);
#ifdef VSCode
system("pause");
#endif
return ;
}

CodeForces621E 快速矩阵幂优化dp的更多相关文章

  1. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  2. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  3. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  4. Java大数——快速矩阵幂

    Java大数——快速矩阵幂 今天做了一道水题,尽管是水题,但是也没做出来.最后问了一下ChenJ大佬,才慢慢的改对,生无可恋了.... 题目描述: 给a,b,c三个数字,求a的b次幂对c取余. 数据范 ...

  5. HDU - 6395 Sequence (分块+快速矩阵幂)

    给定递推式: 求Fn. 分析:给出的公式可以用快速矩阵幂运算得到,但 P/n 整除对于不同的i,值是不同的. 可以根据P将3-n分成若干块,每块中P整除n的值是相同的.分块的时候要注意判断. 将每块的 ...

  6. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  7. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

  8. 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)

    Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...

  9. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

随机推荐

  1. c++ 的绝对值函数

    添加头文件 #include <cmath> 对于整数 abs(); 对于浮点数 fabs();

  2. vuex2.0 基本使用(3) --- getter

    有的组件中获取到 store 中的state,  需要对进行加工才能使用,computed 属性中就需要写操作函数,如果有多个组件中都需要进行这个操作,那么在各个组件中都写相同的函数,那就非常麻烦,这 ...

  3. poj-1459(网络流-最大流)

    题意:给你n个点的电网系统,有一些点是电站,能提供p的电能,有些点是用户,能消耗c的电能,有些是过渡站,不消耗不产生(等于没用),然后m条电线(x,y,w),代表x可以向y运输w的电能,问你这个电网系 ...

  4. Nginx split_client模块

    一般用户AB测试根据比例调用指定的接口  默认编译进nginx Syntax: split_clients string $variable { ... } Default: — Context: h ...

  5. 洛谷 P1538 迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  6. Linux命令归纳

    Linux基本命令 Linux Xshell远程连接 ssh 用户名@id地址 例如: ssh root@192.168.11.53 增加类指令 创建文件夹 mkdir 文件名 mkdir -p 路径 ...

  7. Unnitest测试框架总结

    Unnitest总结 第一点,setUp和tearDown方法 l  每次执行test开头的用例都会执行setUp和tearDown方法 l  如:  import unittest class M ...

  8. day5 range 用法示例

    函数语法 range(start, stop[, step]) 参数说明: start: 计数从 start 开始.默认是从 0 开始.例如range(5)等价于range(0, 5); stop: ...

  9. 怎么让 Lua 5.3.4 支持中文变量名和中文函数名

    1. 在官网下载最新版Lua源码 Lua :Download 2. 解压后进入目录,找到/src/llex.c,打开修改 找到如下内容 修改为下面代码,并保存. default: { if (lisl ...

  10. 【CF1139D】Steps to One(动态规划)

    [CF1139D]Steps to One(动态规划) 题面 CF 你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望. 题解 设\(f[ ...