P2590 [ZJOI2008]树的统计
题目描述
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。
我们将以下面的形式来要求你对这棵树完成一些操作:
I. CHANGE u t : 把结点u的权值改为t
II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值
III. QSUM u v: 询问从点u到点v的路径上的节点的权值和
注意:从点u到点v的路径上的节点包括u和v本身
输入输出格式
输入格式:
输入文件的第一行为一个整数n,表示节点的个数。
接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有一条边相连。
接下来一行n个整数,第i个整数wi表示节点i的权值。
接下来1行,为一个整数q,表示操作的总数。
接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
输出格式:
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。
输入输出样例
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
4
1
2
2
10
6
5
6
5
16
说明
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。
裸的树链剖分。
注意所有的值都要取最大或者最小。
有很小的负边权!
update:数据已加强,下面的代码现在不能通过!
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ls k<<1
#define rs k<<1|1
using namespace std;
const int MAXN=1000001;
inline void read(int &n)
{
char c='+';int x=0;bool flag=0;
while(c<'0'||c>'9')
{c=getchar();if(c=='-')flag=1;}
while(c>='0'&&c<='9')
{x=(x<<1)+(x<<3)+c-48,c=getchar();}
flag==1?n=-x:n=x;
}
int n;
int a[MAXN];
int fa[MAXN];// 每一个节点的父亲节点
int deep[MAXN];// 每一个节点的深度
int top[MAXN];// 重链上的顶节点
int son[MAXN];// 每一个点的重儿子
int size[MAXN];// 子节点的数量
int pos[MAXN];// 划分轻重链之后的编号
int tot;// 总结点的数量
struct node
{
int l,r,maxn,sum;
}tree[MAXN];
struct EDGE
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN];
int num=1;
//int nowmax=-1;
int nowsum=0;
void update(int k)
{
tree[k].maxn=max(tree[ls].maxn,tree[rs].maxn);
tree[k].sum=(tree[ls].sum+tree[rs].sum);
}
void add_edge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
int dfs1(int now,int nowfa,int nowdeep)
{
deep[now]=nowdeep;
fa[now]=nowfa;
size[now]=1;
for(int i=head[now];i!=-1;i=edge[i].nxt)
{
if(edge[i].v!=nowfa)
{
dfs1(edge[i].v,now,nowdeep+1);
size[now]+=size[edge[i].v];
if(son[now]==-1||size[edge[i].v]>size[son[now]])
son[now]=edge[i].v;
}
}
}
void dfs2(int now,int nowid)
{
tot++;
pos[now]=tot;//更改当前节点的编号
top[now]=nowid;
if(!son[now])// 没有重儿子
return ;
dfs2(son[now],nowid);// 在一条重链上
for(int i=head[now];i!=-1;i=edge[i].nxt)
if(deep[edge[i].v]>deep[edge[i].u]&&edge[i].v!=son[edge[i].u])
dfs2(edge[i].v,edge[i].v);//自己和自己一条重链
return ;
}
void build_tree(int k,int ll,int rr)
{
tree[k].l=ll;tree[k].r=rr;
if(tree[k].l==tree[k].r)
{
tree[k].maxn=tree[k].sum=0;
return ;
}
int mid=(ll+rr)>>1;
build_tree(ls,ll,mid);
build_tree(rs,mid+1,rr);
update(k);
}
void insert(int k,int pos,int val)
{
if(tree[k].l==tree[k].r)
{
tree[k].maxn=tree[k].sum=val;
return ;
}
int mid=(tree[k].l+tree[k].r)>>1;
if(pos<=mid)
insert(ls,pos,val);
if(pos>mid)
insert(rs,pos,val);
update(k); }
int querymax(int k,int ll,int rr)
{
if(ll<=tree[k].l&&tree[k].r<=rr)
return tree[k].maxn;
int mid=(tree[k].l+tree[k].r)>>1,nowmax=-1;
if(ll<=mid)
nowmax=max(nowmax,querymax(ls,ll,rr));
if(rr>mid)
nowmax=max(nowmax,querymax(rs,ll,rr));
return nowmax;
}
int askmax(int u,int v)
{ int ans=-0x7ffff;
while(top[u]!=top[v])//不在一条重链上
{
if(deep[top[u]]<deep[top[v]])
swap(u,v);
ans=max(ans,querymax(1,pos[top[u]],pos[u]));
u=fa[top[u]];
}
if(pos[u]>pos[v])
swap(u,v);
ans=max(ans,querymax(1,pos[u],pos[v]));
return ans;
}
int querysum(int k,int ll,int rr)
{
if(ll<=tree[k].l&&tree[k].r<=rr)
return tree[k].sum;
int mid=(tree[k].l+tree[k].r)>>1,nowsum=0;
if(ll<=mid)
nowsum+=querysum(ls,ll,rr);
if(rr>mid)
nowsum+=querysum(rs,ll,rr);
return nowsum;
}
int asksum(int u,int v)
{
int ans=0;
while(top[u]!=top[v])
{
if(deep[top[u]]<deep[top[v]])
swap(u,v);
ans+=querysum(1,pos[top[u]],pos[u]);
u=fa[top[u]];
}
if(pos[u]>pos[v])
swap(u,v);
ans+=querysum(1,pos[u],pos[v]);
return ans;
}
int main()
{
///freopen("bzoj_1036.in","r",stdin);
//freopen("bzoj_1036.out","w",stdout);
read(n);
memset(head,-1,sizeof(head));
//memset(son,-1,sizeof(son));
for(int i=1;i<=n-1;i++)
{
int x,y;
read(x);read(y);
add_edge(x,y);
add_edge(y,x);
}
for(int i=1;i<=n;i++)
read(a[i]);
dfs1(1,0,0);
dfs2(1,1);
build_tree(1,1,n);
for(int i=1;i<=n;i++)
insert(1,pos[i],a[i]);
int q;
read(q);
for(int i=1;i<=q;i++)
{
string s;
cin>>s;
if(s[1]=='H')// 修改
{
int p,v;
read(p);read(v);
a[p]=v;
insert(1,pos[p],v);
}
else if(s[1]=='M')// 最大值
{
int l,r;
read(l);read(r);
printf("%d\n",askmax(l,r));
}
else//求和
{
int l,r;
read(l);read(r);
printf("%d\n",asksum(l,r));
}
}
return 0;
}
P2590 [ZJOI2008]树的统计的更多相关文章
- P2590 [ZJOI2008]树的统计(树链剖分)
P2590 [ZJOI2008]树的统计 虽然是入门树剖模板 但是我终于1A了(大哭) 懒得写啥了(逃 #include<iostream> #include<cstdio> ...
- P2590 [ZJOI2008]树的统计(LCT)
P2590 [ZJOI2008]树的统计 题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把 ...
- 洛谷——P2590 [ZJOI2008]树的统计(树链剖分模板练手)
P2590 [ZJOI2008]树的统计 I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 III. QSUM u v: 询问 ...
- Luogu P2590 [ZJOI2008]树的统计
最近在学树剖,看到了这题就做了 [ZJOI2008]树的统计 思路 从题面可以知道,这题是树剖题(要求的和模板没什么区别呀喂 就是在普通的树剖上加了一个最大值 所以可以知道就是树剖+特殊的线段树 线段 ...
- 洛谷P2590 [ZJOI2008] 树的统计 [树链剖分]
题目传送门 树的统计 题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t ...
- 【luogu P2590 [ZJOI2008]树的统计】 题解
题目链接:https://www.luogu.org/problemnew/show/P2590 我想学树剖QAQ #include <cstdio> #include <cstri ...
- 洛谷P2590 [ZJOI2008]树的统计 题解 树链剖分+线段树
题目链接:https://www.luogu.org/problem/P2590 树链剖分模板题. 剖分过程要用到如下7个值: fa[u]:u的父节点编号: dep[u]:u的深度: size[u]: ...
- 洛谷 P2590 [ZJOI2008]树的统计(树链剖分)
题目描述一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v ...
- 洛谷 P2590 [ZJOI2008]树的统计
大家好,我非常喜欢暴力数据结构,于是我用块状树过了这道题目 题目: 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE ...
随机推荐
- Eclipse 中构建 Maven 项目的完整过程 - SpringBoot 项目
进行以下步骤的前提是你已经安装好本地maven库和eclipse中的maven插件了(有的eclipse中已经集成了maven插件) 一.Maven项目的新建 1.鼠标右键---->New--- ...
- java中MD5加密
MD5加密是一种不可逆(一些网站通过庞大的数据库可以解密一些简单的)的加密算法(其实是信息摘要算法),常用于用户密码,文件上传等 MD5算法具有以下特点: 1.压缩性:任意长度的数据,算出的MD5值长 ...
- 知识扩展——Git和GitHub的区别
一直以为Git和GitHub是一个东西,直到我看到这个解释.... 转载自:git与github区别与简介 一开始接触git或是github的程序员可能搞不太清楚这些名词到底指代的是什么,所以在这里稍 ...
- asp.net core异步进行新增操作并且需要判断某些字段是否重复的三种解决方案
之前碰到asp.net core异步进行新增操作并且需要判断某些字段是否重复的问题,进行插入操作的话会导致数据库中插入重复的字段!下面把我的解决方法记录一下,如果对您有所帮助,欢迎拍砖! 场景:EFC ...
- 减少重复代码的书写--Lombok
本文版权归 远方的风lyh和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 在开发中,比如我们要写一个modol 实体类 要编写 get.set 这些获取和填值的方法,这样写也没错 ...
- Linux软件包管理之RPM命令
目录 1.Linux软件包分类 一.源码包 二.二进制包 2.rpm 包命名规则 3.rpm包安装 4.rpm包升级 5.rpm包卸载 6.查询rpm包是否安装 7.查询软件包的详细信息 8.查询软件 ...
- es6入门4--promise详解
可以说每个前端开发者都无法避免解决异步问题,尤其是当处理了某个异步调用A后,又要紧接着处理其它逻辑,而最直观的做法就是通过回调函数(当然事件派发也可以)处理,比如: 请求A(function (请求响 ...
- SpringBoot(11) SpringBoot自定义拦截器
自定义拦截器共两步:第一:注册.第二:定义拦截器. 一.注册 @Configuration 继承WebMvcConfigurationAdapter(SpringBoot2.X之前旧版本) 旧版本代码 ...
- SPI 方式初始化 SD 卡总流程图(V2.0)
- Django 系列博客(六)
Django 系列博客(六) 前言 本篇博客介绍 Django 中的路由控制部分,一个网络请求首先到达的就是路由这部分,经过路由与视图层的映射关系再执行相应的代码逻辑并将结果返回给客户端. Djang ...