吴恩达机器学习笔记45-使用支持向量机(Using A SVM)
本篇我们讨论如何运行或者运用SVM。
在高斯核函数之外我们还有其他一些选择,如:
多项式核函数(Polynomial Kernel)
字符串核函数(String kernel)
卡方核函数( chi-square kernel)
直方图交集核函数(histogram intersection kernel)
等等...
这些核函数的目标也都是根据训练集和地标之间的距离来构建新特征,这些核函数需要
满足Mercer's 定理,才能被支持向量机的优化软件正确处理。
多类分类问题
假设我们利用之前介绍的一对多方法来解决一个多类分类问题。如果一共有
吴恩达机器学习笔记45-使用支持向量机(Using A SVM)的更多相关文章
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
- [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...
- [吴恩达机器学习笔记]12支持向量机6SVM总结
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 12.6SVM总结 推荐使用成熟的软件包 用以解决 SVM 最优化问题的软件很复杂,且已经有研究者做了很多年数值优化.因此强烈 ...
- [吴恩达机器学习笔记]12支持向量机4核函数和标记点kernels and landmark
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 12.4 核函数与标记点- Kernels and landmarks 问题引入 如果你有以下的训练集,然后想去拟合其能够分开 ...
- [吴恩达机器学习笔记]11机器学习系统设计3-4/查全率/查准率/F1分数
11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metr ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:&quo ...
随机推荐
- express基础项目创建
https://www.cnblogs.com/zhentaoo/p/6392248.html
- OO第一单元三次作业总结
写在前面 第一单元作业是针对输入的多项式进行格式合法判断,然后进行求导,结果长度优化,最后输出.三次难度递增,不断添加新的需求,总体感觉在实现方面没有多大困难(?),个人主要困扰环节是寻找自己未知bu ...
- mysql读写分离——中间件ProxySQL的简介与配置
mysql实现读写分离的方式 mysql 实现读写分离的方式有以下几种: 程序修改mysql操作,直接和数据库通信,简单快捷的读写分离和随机的方式实现的负载均衡,权限独立分配,需要开发人员协助. am ...
- jquery基础知识随笔
<html> <head> <script type="text/javascript" src="/jquery/jquery.js&qu ...
- 通俗易懂--岭回归(L2)、lasso回归(L1)、ElasticNet讲解(算法+案例)
1.L2正则化(岭回归) 1.1问题 想要理解什么是正则化,首先我们先来了解上图的方程式.当训练的特征和数据很少时,往往会造成欠拟合的情况,对应的是左边的坐标:而我们想要达到的目的往往是中间的坐标,适 ...
- vue中使用axios
1.结合vue-axios使用 vue-axios是按照vue插件的方式去写的,那么结合vue-axios就可以使用Vue.use()这个方法import axios from 'axios' imp ...
- python 环境变量设置PYTHONPATH
PYTHONPATH是Python搜索路径,默认我们import的模块都会从PYTHONPATH里面寻找. 打印PYTHONPATH: import os print sys.path >['' ...
- Eclipse 安装 AmaterasUML 插件
网上很多Eclipse 安装UML插件教程,可能对高版本Eclipse都无法安装成功,本文提供的安装方式,亲测可用. 一.安装GEF插件 1.打开eclipse官网 https://www.eclip ...
- JavaScript基础视频教程总结(071-080章)
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- MyBatis配置C3P0连接池
一.导包 c3p0包 mybatis包 数据库的连接包 二.继承UnpooledDataSourceFactory的类 Mybatis 没有帮开发者实现 c3p0 数据库连接池,故需要使用者自 ...