这个题非常有意思的地方是,我们发现区间[1,4]和[5,8]是紧挨着的,因为这个的数代表的是一段区间,原本我们对于普通的离散,

a[1]=1,a[2]=5,a[3]=6,a[4]=8;数组下标就是重新离散的位置,但是a[2]和a[3]明显不重叠,为此我们需要重新考虑离散的内容,其实不妨这样,如果区间的间隔大于1,那么我们插入一个数a[i]+1,这样就强行把a[i]和a[i+1]分开,因为

如三张海报为:1~10 1~4 6~10

离散化时 X[ 1 ] = 1, X[ 2 ] = 4, X[ 3 ] = 6, X[ 4 ] = 10
第一张海报时:墙的1~4被染为1;
第二张海报时:墙的1~2被染为2,3~4仍为1;
第三张海报时:墙的3~4被染为3,1~2仍为2。
最终,第一张海报就显示被完全覆盖了,于是输出2,但实际上明显不是这样,正确输出为3。

新的离散方法为:在相差大于1的数间加一个数,例如在上面1 4 6 10中间加5(算法中实际上1,4之间,6,10之间都新增了数的)

为什么会这样呢?我们这样考虑,如果a[1]=3,a[2]=4那么他们两个是相邻的,这样其实离散后他们还是相邻的(因为1,2在题目的意义是相邻的),但是如果是a[1]=3,a[2]=5哈希后其实是(1,2) 它是相邻的(实际上3,5不相邻),于是我们想到这样,既然我们中间有一段(没有数那一段)是我们所忽略的,我们可以新加一个数4,如

a[1]=3    a[2]=4   a[3]=5; 这样哈希后是1,2,3,我们认为3->1而5->3,(1,3)其实是不相邻的。这道题也就没什么问题了,最后区间查询+区间修改。

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn = ;
int sum[maxn<<];
int vis[maxn<<];
int li[maxn*];
int ri[maxn*];
int lsh[maxn<<];
void pushdown(int root){//把节点信息传给儿子节点
sum[root<<]=sum[root];//相应这个节点如果最后被修改成这个结果,那么他的儿子节点也应该修改
sum[root<<|]=sum[root];
sum[root]=-;//清空laze标记
}
int ans;
void update(int root,int L,int R,int C,int l,int r){
if (L<=l && r<=R)//如果被修改区间完全盖过当前区间
{
sum[root]=C;//更新
return;
}
if (sum[root]!=-)
pushdown(root);//如果不满足上述条件,我们需要把节点的信息更新,
int m=(l+r)>>;
if (m>=R)update(root<<,L,R,C,l,m);//信息完全在左子树
else if(L>m)update(root<<|,L,R,C,m+,r);//完全在右子树
else update(root<<,L,m,C,l,m),update(root<<|,m+,R,C,m+,r);
}
void query(int root,int l,int r){
// cout<<root<<endl;
if (sum[root]!=- && !vis[sum[root]])//如果当前节点的信息已经能包含所有的节点信息,并且这个节点的信息是第一次访问到
{
ans++;
vis[sum[root]]=;
return;
}
if (l==r)
{
return;
}
if (sum[root]!=-)
pushdown(root);//更新标记
int m=(l+r)/;
query(root<<,l,m);
query(root<<|,m+,r);
}
int main(){
int t;
int n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
memset(sum,-,sizeof(sum));
memset(vis,,sizeof(vis));
int tot=;
for (int i=;i<n;i++)
{
scanf("%d%d",&li[i],&ri[i]);
lsh[tot++]=li[i];
lsh[tot++]=ri[i];
}
sort(lsh,lsh+tot);
int mm=unique(lsh,lsh+tot)-lsh;
int tt=mm;
for (int i=;i<tt;i++)
{
if (lsh[i]-lsh[i-]>)
lsh[mm++]=lsh[i-]+;
}
sort(lsh,lsh+mm);//排序 按照数组下标进行离散
for (int i=;i<n;i++){
int x=lower_bound(lsh,lsh+mm,li[i])-lsh;//查找左边的离散后的号码
int y=lower_bound(lsh,lsh+mm,ri[i])-lsh;//查找右边的离散后的号码
update(,x,y,i,,mm-);//更新
}
ans=;
query(,,mm-);
printf("%d\n",ans);
}
return ;
}

POJ - 2528 区间离散化,线段树区间修改,区间询问的更多相关文章

  1. xdoj-1324 (区间离散化-线段树求区间最值)

    思想 : 1 优化:题意是覆盖点,将区间看成 (l,r)转化为( l-1,r) 覆盖区间 2 核心:dp[i]  覆盖从1到i区间的最小花费 dp[a[i].r]=min (dp[k])+a[i]s; ...

  2. POJ 2528 Mayor's posters 【区间离散化+线段树区间更新&&查询变形】

    任意门:http://poj.org/problem?id=2528 Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  3. HDU 2665.Kth number-可持久化线段树(无修改区间第K小)模板 (POJ 2104.K-th Number 、洛谷 P3834 【模板】可持久化线段树 1(主席树)只是输入格式不一样,其他几乎都一样的)

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. HDU 4417.Super Mario-可持久化线段树(无修改区间小于等于H的数的个数)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. BZOJ4653(区间离散化+线段树+决策单调尺取)

    写得很好的题解 一眼过去很像是:排序,然后从前向后扫,有这个区间时插到树里,过去以后再删除.然后事实也是这样做的…… 具体起来: 1.如果考虑暴力的话,一种想法是枚举左端和右端要选取的区间(如果我们按 ...

  6. [Noi2016]区间[离散化+线段树维护+决策单调性]

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 621  Solved: 329[Submit][Status][D ...

  7. poj 2528 poster经典线段树+lazy+离散化

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; #def ...

  8. Lightoj 1348 Aladdin and the Return Journey (树链剖分)(线段树单点修改区间求和)

    Finally the Great Magical Lamp was in Aladdin's hand. Now he wanted to return home. But he didn't wa ...

  9. I Hate It HDU - 1754 线段树 单点修改+区间最值

    #include<iostream> #include<cstring> using namespace std; ; int m,n,p; struct node{ int ...

  10. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

随机推荐

  1. C#委托(转载)

    C#委托的介绍(delegate.Action.Func.predicate) from:http://www.cnblogs.com/akwwl/p/3232679.html 委托是一个类,它定义了 ...

  2. td 元素属性 noWrap 防止折行、撑开及文字换行

    最近调试程序,遇到如下问题: 也就是这个表格里面的文字被换行了,究其原因,主要是td中的width之和超过了100%导致的.谷歌了好久,终于发现,可以用noWrap="noWrap" ...

  3. LeetCode算法题-Path Sum(Java实现)

    这是悦乐书的第169次更新,第171篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第28题(顺位题号是112).给定二叉树和整数sum,确定树是否具有根到叶路径,使得沿路 ...

  4. 聚类——K-means

    聚类——认识K-means算法 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.聚类与分类 聚类: 无监督学习.聚类是在预先不知道欲划分类的情况下, ...

  5. 028实现strStr()

    #pragma once #include "000库函数.h" /*********************自解**************/ //使用算法中的find 12ms ...

  6. openPose-注

    静态编译出错:MD能通过 \ https://blog.csdn.net/Silver_sail/article/details/40540887 E:\project\BodyPoseEstimat ...

  7. ubuntu如何安装 adobe flash player或adobe插件

    方法/步骤 第一步当然是打开终端控制器.有很多方法,这里推荐使用快捷键:ctrl+alt+T.快捷又方便. 然后更新源列表,使用如下命令:sudo apt-get update,后面要输入密码. 下面 ...

  8. 【CQOI2006】凸多边形

    1713 -- [CQOI2006]凸多边形 Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input ...

  9. linux 软连接创建 压缩解压缩 linux的dns服务相关

    linux软连接创建 注意用绝对路径,语法如下 ln -s 目标文件绝对路径 软连接名字绝对路径 ln -s /小护士.txt /tmp/hs.txt 修改linux的PS1变量,命令提示符变量 PS ...

  10. 两段锁协议(Two-Phase Locking――2PL)

    两段锁协议(Two-Phase Locking――2PL) 两段锁协议规定所有的事务应遵守的规则: ① 在对任何数据进行读.写操作之前,首先要申请并获得对该数据的封锁. ② 在释放一个封锁之后,事务不 ...