这个题非常有意思的地方是,我们发现区间[1,4]和[5,8]是紧挨着的,因为这个的数代表的是一段区间,原本我们对于普通的离散,

a[1]=1,a[2]=5,a[3]=6,a[4]=8;数组下标就是重新离散的位置,但是a[2]和a[3]明显不重叠,为此我们需要重新考虑离散的内容,其实不妨这样,如果区间的间隔大于1,那么我们插入一个数a[i]+1,这样就强行把a[i]和a[i+1]分开,因为

如三张海报为:1~10 1~4 6~10

离散化时 X[ 1 ] = 1, X[ 2 ] = 4, X[ 3 ] = 6, X[ 4 ] = 10
第一张海报时:墙的1~4被染为1;
第二张海报时:墙的1~2被染为2,3~4仍为1;
第三张海报时:墙的3~4被染为3,1~2仍为2。
最终,第一张海报就显示被完全覆盖了,于是输出2,但实际上明显不是这样,正确输出为3。

新的离散方法为:在相差大于1的数间加一个数,例如在上面1 4 6 10中间加5(算法中实际上1,4之间,6,10之间都新增了数的)

为什么会这样呢?我们这样考虑,如果a[1]=3,a[2]=4那么他们两个是相邻的,这样其实离散后他们还是相邻的(因为1,2在题目的意义是相邻的),但是如果是a[1]=3,a[2]=5哈希后其实是(1,2) 它是相邻的(实际上3,5不相邻),于是我们想到这样,既然我们中间有一段(没有数那一段)是我们所忽略的,我们可以新加一个数4,如

a[1]=3    a[2]=4   a[3]=5; 这样哈希后是1,2,3,我们认为3->1而5->3,(1,3)其实是不相邻的。这道题也就没什么问题了,最后区间查询+区间修改。

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn = ;
int sum[maxn<<];
int vis[maxn<<];
int li[maxn*];
int ri[maxn*];
int lsh[maxn<<];
void pushdown(int root){//把节点信息传给儿子节点
sum[root<<]=sum[root];//相应这个节点如果最后被修改成这个结果,那么他的儿子节点也应该修改
sum[root<<|]=sum[root];
sum[root]=-;//清空laze标记
}
int ans;
void update(int root,int L,int R,int C,int l,int r){
if (L<=l && r<=R)//如果被修改区间完全盖过当前区间
{
sum[root]=C;//更新
return;
}
if (sum[root]!=-)
pushdown(root);//如果不满足上述条件,我们需要把节点的信息更新,
int m=(l+r)>>;
if (m>=R)update(root<<,L,R,C,l,m);//信息完全在左子树
else if(L>m)update(root<<|,L,R,C,m+,r);//完全在右子树
else update(root<<,L,m,C,l,m),update(root<<|,m+,R,C,m+,r);
}
void query(int root,int l,int r){
// cout<<root<<endl;
if (sum[root]!=- && !vis[sum[root]])//如果当前节点的信息已经能包含所有的节点信息,并且这个节点的信息是第一次访问到
{
ans++;
vis[sum[root]]=;
return;
}
if (l==r)
{
return;
}
if (sum[root]!=-)
pushdown(root);//更新标记
int m=(l+r)/;
query(root<<,l,m);
query(root<<|,m+,r);
}
int main(){
int t;
int n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
memset(sum,-,sizeof(sum));
memset(vis,,sizeof(vis));
int tot=;
for (int i=;i<n;i++)
{
scanf("%d%d",&li[i],&ri[i]);
lsh[tot++]=li[i];
lsh[tot++]=ri[i];
}
sort(lsh,lsh+tot);
int mm=unique(lsh,lsh+tot)-lsh;
int tt=mm;
for (int i=;i<tt;i++)
{
if (lsh[i]-lsh[i-]>)
lsh[mm++]=lsh[i-]+;
}
sort(lsh,lsh+mm);//排序 按照数组下标进行离散
for (int i=;i<n;i++){
int x=lower_bound(lsh,lsh+mm,li[i])-lsh;//查找左边的离散后的号码
int y=lower_bound(lsh,lsh+mm,ri[i])-lsh;//查找右边的离散后的号码
update(,x,y,i,,mm-);//更新
}
ans=;
query(,,mm-);
printf("%d\n",ans);
}
return ;
}

POJ - 2528 区间离散化,线段树区间修改,区间询问的更多相关文章

  1. xdoj-1324 (区间离散化-线段树求区间最值)

    思想 : 1 优化:题意是覆盖点,将区间看成 (l,r)转化为( l-1,r) 覆盖区间 2 核心:dp[i]  覆盖从1到i区间的最小花费 dp[a[i].r]=min (dp[k])+a[i]s; ...

  2. POJ 2528 Mayor's posters 【区间离散化+线段树区间更新&&查询变形】

    任意门:http://poj.org/problem?id=2528 Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  3. HDU 2665.Kth number-可持久化线段树(无修改区间第K小)模板 (POJ 2104.K-th Number 、洛谷 P3834 【模板】可持久化线段树 1(主席树)只是输入格式不一样,其他几乎都一样的)

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. HDU 4417.Super Mario-可持久化线段树(无修改区间小于等于H的数的个数)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. BZOJ4653(区间离散化+线段树+决策单调尺取)

    写得很好的题解 一眼过去很像是:排序,然后从前向后扫,有这个区间时插到树里,过去以后再删除.然后事实也是这样做的…… 具体起来: 1.如果考虑暴力的话,一种想法是枚举左端和右端要选取的区间(如果我们按 ...

  6. [Noi2016]区间[离散化+线段树维护+决策单调性]

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 621  Solved: 329[Submit][Status][D ...

  7. poj 2528 poster经典线段树+lazy+离散化

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; #def ...

  8. Lightoj 1348 Aladdin and the Return Journey (树链剖分)(线段树单点修改区间求和)

    Finally the Great Magical Lamp was in Aladdin's hand. Now he wanted to return home. But he didn't wa ...

  9. I Hate It HDU - 1754 线段树 单点修改+区间最值

    #include<iostream> #include<cstring> using namespace std; ; int m,n,p; struct node{ int ...

  10. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

随机推荐

  1. [20190306]奇怪的查询结果.txt

    [20190306]奇怪的查询结果.txt--//链接http://www.itpub.net/thread-2108588-1-1.html提到一个非常古怪的问题,我自己重复测试看看:1.环境:SC ...

  2. HTML—标签与表格 、框架

    1.标签 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3 ...

  3. c/c++求解图的关键路径 critical path

    c/c++求解图的关键路径 critical path 上图表示一个工程,工程以V1为起始子工程,V9为终止子工程. 由图可以看出,要开工V5工程,必须在完成工程V2和V3后才可以. 完成V2需要a1 ...

  4. eclipse版本对应名称以及下载地址

        Eclipse 1.0         2001年11月7日(Win32/Linux32 Motif) Eclipse 2.0         2002年6月27日(Linux32 Motif ...

  5. SSH 和 Git

    了解SSH SSH 以非对称加密实现身份验证.较常用的非对称加密有 RSA. 两种加密过程: 1.通过用户名密码访问服务器,即使传输的数据是加密的也可能会被劫持到不信任的服务器,泄露用户名和密码. 2 ...

  6. node.js cluster模式启用方式

    众所周知,Node.js运行在Chrome的JavaScript运行时平台上,我们把该平台优雅地称之为V8引擎.不论是V8引擎,还是之后的Node.js,都是以单线程的方式运行的,因此,在多核心处理器 ...

  7. Lingo求解线性规划案例4——下料问题

    凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 造纸厂接到定单,所需卷纸的宽度和长度如表 卷纸的宽度 长度 5 7 9 10000 30000 20000 工 ...

  8. fg和bg前后台调度命令

    Linux下的fg和bg命令是进程的前后台调度命令,即将指定号码(非进程号)的命令进程放到前台或后台运行.比如一个需要长时间运行的命令,我们就希望把它放入后台,这样就不会阻塞当前的操作:而一些服务型的 ...

  9. (转)Spring Boot 2 (五):Docker Compose + Spring Boot + Nginx + Mysql 实践

    http://www.ityouknow.com/springboot/2018/03/28/dockercompose-springboot-mysql-nginx.html 我知道大家这段时间看了 ...

  10. MySQL高级知识(十三)——表锁

    前言:锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算机资源(如CPU.RAM.I/O等)的争用外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是 ...