0.目录

2. threading.Lock() 的必要性
3.观察block
4.threading.RLock() 的应用场景

1.参考

Thread Synchronization Mechanisms in Python

count += 1 不是原子操作,三步操作可能被中断,通过lock将三步操作“封装”为一步操作,要么执行,要么不执行。

counter = 0

def process_item(item):
global counter
... do something with item ...
counter += 1 # The reason for this is that the increment operation is actually executed in three steps;
#first, the interpreter fetches the current value of the counter,
# then it calculates the new value,
# and finally, it writes the new value back to the variable.

Atomic Operations #

The simplest way to synchronize access to shared variables or other resources is to rely on atomic operations in the interpreter.

An atomic operation is an operation that is carried out in a single execution step, without any chance that another thread gets control.

What kinds of global value mutation are thread-safe?

python的原子操作

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be set via sys.setcheckinterval(). Each bytecode instruction and therefore all the C implementation code reached from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that “look atomic” really are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are ints):

L.append(x)
L1.extend(L2)
x = L[i]
x = L.pop()
L1[i:j] = L2
L.sort()
x = y
x.field = y
D[x] = y
D1.update(D2)
D.keys() These aren’t: i = i+1
L.append(L[-1])
L[i] = L[j]
D[x] = D[x] + 1 Operations that replace other objects may invoke those other objects’ __del__() method when their reference count reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists. When in doubt, use a mutex!

2. threading.Lock()  的必要性

#!usr/bin/env python
#coding:utf-8
import sys
import time
import random
import logging import threading
import Queue lock = threading.Lock() #'function-call ownership'
rlock = threading.RLock() #thread ownership logging.basicConfig(level=logging.DEBUG,
format = '%(asctime)s - %(threadName)-10s - %(levelname)s - %(message)s')
logger = logging.getLogger() count = 0 class MyThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self) def run(self):
global count for i in range(100):
count += 1
logger.debug('{} finished, count is {}'.format(self.name, count)) def main():
logger.debug('initial count: {}'.format(count)) thread_list = [MyThread() for i in range(2)]
for t in thread_list:
t.start()
for t in thread_list:
t.join() logger.debug('final count: {}'.format(count)) if __name__ == '__main__':
main()

修改run函数代码的不同输出:

    def run(self):
global count for i in range(100):
count += 1
logger.debug('{} finished, count is {}'.format(self.name, count))
# 在切换线程之前,某一线程已经完成,两个线程顺序完成,结果几乎不会有误
# 2017-08-20 12:19:30,857 - MainThread - DEBUG - initial count: 0
# 2017-08-20 12:19:30,858 - Thread-1 - DEBUG - Thread-1 finished, count is 100
# 2017-08-20 12:19:30,858 - Thread-2 - DEBUG - Thread-2 finished, count is 200
# 2017-08-20 12:19:30,858 - MainThread - DEBUG - final count: 200 time.sleep(0.001)
for i in range(100):
count += 1
logger.debug('{} finished, count is {}'.format(self.name, count))
# 开头sleep导致两个线程几乎同时启动,结果可能有误
# 2017-08-20 12:24:59,046 - MainThread - DEBUG - initial count: 0
# 2017-08-20 12:24:59,048 - Thread-2 - DEBUG - Thread-2 finished, count is 124
# 2017-08-20 12:24:59,048 - Thread-1 - DEBUG - Thread-1 finished, count is 153
# 2017-08-20 12:24:59,048 - MainThread - DEBUG - final count: 153 for i in range(10000):
count += 1
logger.debug('{} finished, count is {}'.format(self.name, count))
# bytecodes足够导致两个线程交替运行,结果大概率有误
# 2017-08-20 12:20:17,719 - MainThread - DEBUG - initial count: 0
# 2017-08-20 12:20:17,723 - Thread-1 - DEBUG - Thread-1 finished, count is 12438
# 2017-08-20 12:20:17,723 - Thread-2 - DEBUG - Thread-2 finished, count is 12616
# 2017-08-20 12:20:17,723 - MainThread - DEBUG - final count: 12616 with lock:
for i in range(10000):
count += 1
logger.debug('{} finished, count is {}'.format(self.name, count))
# lock直到某一线程完成,结果正确
# 2017-08-20 12:20:37,630 - MainThread - DEBUG - initial count: 0
# 2017-08-20 12:20:37,631 - Thread-1 - DEBUG - Thread-1 finished, count is 10000
# 2017-08-20 12:20:37,632 - Thread-2 - DEBUG - Thread-2 finished, count is 20000
# 2017-08-20 12:20:37,634 - MainThread - DEBUG - final count: 20000 for i in range(10000):
with lock:
count += 1
logger.debug('{} finished, count is {}'.format(self.name, count))
# 两个线程交替lock,结果正确
# 2017-08-20 12:21:03,921 - MainThread - DEBUG - initial count: 0
# 2017-08-20 12:21:03,973 - Thread-1 - DEBUG - Thread-1 finished, count is 19979
# 2017-08-20 12:21:03,973 - Thread-2 - DEBUG - Thread-2 finished, count is 20000
# 2017-08-20 12:21:03,973 - MainThread - DEBUG - final count: 20000

3.观察block

    def run(self):
global count all = range(10000) #确保每个线程 +1 的次数
while all != []:
if not lock.acquire(False): #假设没有参数会导致block,则马上返回false当不block;否则返回true且acquire
logger.debug('{} wait...{}'.format(self.name, len(all)))
else:
try:
count += 1
all.pop()
except Exception as err:
logger.debug('{} err, count is {}'.format(self.name, count))
finally:
# logger.debug('{} release {} {}'.format(self.name, count, len(all))) #导致两个线程顺序执行???
lock.release()
logger.debug('{} finished, count is {}'.format(self.name, count))

输出:

2017-08-20 12:32:55,204 - MainThread - DEBUG - initial count: 0
2017-08-20 12:32:55,210 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,210 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,210 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,210 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,210 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,210 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,210 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,211 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,213 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,213 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,213 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,213 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,214 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,214 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,214 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,214 - Thread-1 - DEBUG - Thread-1 wait...9925
2017-08-20 12:32:55,216 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,216 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,216 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,216 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,216 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,217 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,217 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,217 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,217 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,217 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,217 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,217 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,217 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,217 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,219 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,219 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,219 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,219 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,219 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,220 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,221 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,221 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,221 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,221 - Thread-2 - DEBUG - Thread-2 wait...6036
2017-08-20 12:32:55,226 - Thread-1 - DEBUG - Thread-1 finished, count is 13964
2017-08-20 12:32:55,236 - Thread-2 - DEBUG - Thread-2 finished, count is 20000
2017-08-20 12:32:55,236 - MainThread - DEBUG - final count: 20000

4.threading.RLock() 的应用场景

Problems with Simple Locking

lock = threading.Lock()

def get_first_part():
with lock: # any thread that attempts to acquire the lock will block, even if the same thread is already holding the lock.
... fetch data for first part from shared object
return data def get_second_part():
with lock:
... fetch data for second part from shared object
return data def get_both_parts():
with lock: # other thread may modify the resource between the two calls
first = get_first_part()
# between the two calls
second = get_second_part()
return first, second # While simple locks will block if the same thread attempts to acquire the same lock twice,
# a re-entrant lock only blocks if another thread currently holds the lock.
rlock = threading.RLock()

python之多线程 threading.Lock() 和 threading.RLock()的更多相关文章

  1. python的threading的使用(join方法,多线程,锁threading.Lock和threading.Condition

    一.开启多线程方法一 import threading,time def write1(): for i in range(1,5): print('1') time.sleep(1) def wri ...

  2. python爬虫——多线程+协程(threading+gevent)

    上一篇博客中我介绍了如何将爬虫改造为多进程爬虫,但是这种方法对爬虫效率的提升不是非常明显,而且占用电脑cpu较高,不是非常适用于爬虫.这篇博客中,我将介绍在爬虫中广泛运用的多线程+协程的解决方案,亲测 ...

  3. 基于Python的多线程模块Threading小结

    步入正题前,先准备下基本知识,线程与进程的概念. 相信作为一个测试人员,如果从理论概念上来说其两者的概念或者区别,估计只会一脸蒙蔽,这里就举个例子来说明下其中的相关概念. 平安夜刚过,你是吃到了苹果还 ...

  4. Python:多线程编程

    1.IO编程 IO(input/output).凡是用到数据交换的地方,都会涉及io编程,例如磁盘,网络的数据传输.在IO编程中,stream(流)是一种重要的概念,分为输入流(input strea ...

  5. 孤荷凌寒自学python第三十九天python 的线程锁Lock

    孤荷凌寒自学python第三十九天python的线程锁Lock (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 当多个线程同时操作一个文件等需要同时操作某一对象的情况发生时,很有可能发生冲突, ...

  6. Day12- Python基础12 线程、GIL、Lock锁、RLock锁、Semaphore锁、同步条件event

    http://www.cnblogs.com/yuanchenqi/articles/6248025.html  博客地址 本节内容: 1:进程和线程的说明 2:线程的两种调用方式 3:threadi ...

  7. python中多线程相关

    基础知识 进程:进程就是一个程序在一个数据集上的一次动态执行过程 数据集:程序执行过程中需要的资源 进程控制块:完成状态保存的单元 线程:线程是寄托在进程之上,为了提高系统的并发性 线程是进程的实体 ...

  8. python网络-多线程(22)

    一.什么是线程 线程(英语:thread)是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.同一进程中的多条线程将共享该进程中的全部系统资源,一个进程可以有很多线程,每 ...

  9. python 使用多线程进行并发编程/互斥锁的使用

    import threading import time """ python的thread模块是比较底层的模块,python的threading模块是对thread做了 ...

随机推荐

  1. 流形学习(manifold learning)综述

    原文地址:https://blog.csdn.net/dllian/article/details/7472916 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低 ...

  2. (转!)利用Keras实现图像分类与颜色分类

    2018-07-19 全部谷歌渣翻加略微修改 大家将就的看哈 建议大佬们还是看看原文 点击收获原文 其中用到的示例文件 multi-output-classification 大家可以点击 下载 . ...

  3. IIS环境下部署https【转载】

    1.首先我们要取走我们的证书,保存在我们本地的电脑里,然后复制到服务器即可. 2.取走后接下来干嘛?当然是打开文件看看里面有些什么啊.我们找到IIS那个压缩包并解压. 3.解析得到pfx文件,也就是我 ...

  4. 前端 --- 关于DOM的介绍

    111 什么是DOM DOM:文档对象模型.DOM 为文档提供了结构化表示,并定义了如何通过脚本来访问文档结构.目的其实就是为了能让js操作html元素而制定的一个规范. DOM就是由节点组成的. 解 ...

  5. [记录]一个有趣的url请求(nodejs)

    1 前言 IDE是webstrom,跟项目编程语言,应该没有多大关系. 2 现象 两个看起来是一样的url,但是一个能访问一个不能访问. 然后,复制url到console中发现了差异,分别是:file ...

  6. Caffeine缓存

    在本文中,我们来看看 Caffeine — 一个高性能的 Java 缓存库. 缓存和 Map 之间的一个根本区别在于缓存可以回收存储的 item. 回收策略为在指定时间删除哪些对象.此策略直接影响缓存 ...

  7. Linux安装nodejs和npm

    先安装,nvm,即是Node Version Manager(Node版本管理器) curl -o- https://raw.githubusercontent.com/creationix/nvm/ ...

  8. Oracle 所有字典

    select * from DBA_CONS_COLUMNS ; ---Information about accessible columns in constraint definitions s ...

  9. Confluence 6 数据库表-授权(Authentication)

    下面的表格对用户授权有关的信息进行存储,这部分是通过嵌入到 Confluence 中的  Atlassian Crowd 框架实现的. cwd_user Confluence 中每一个用户的信息. c ...

  10. 自定义你的 Confluence 6 站点

    本部分对 Confluence 全站进行自定义的相关内容进行了说明.这部分只能是具有 Confluence 的管理员权限的用户才能进行操作 —— 系统管理员或者 Confluence 管理员. 有关对 ...