【UOJ244】【UER #7】短路
题解:
感觉贪心水平有所提高。。
首先比较显然的事情是我们可以枚举最深进行到哪一层
我们会发现,当且仅当该层是最小值才会使用决策,
并且是从该层的左上,走到右下
另外中间步骤就是(好难描述啊)一个单调下降序列,每个会走最多的向右走的步数,然后中间的点只走一次 (这句话应该正常人是无法理解的)
但是处理起来还是比较简单的,我们考虑从上一层到这一层实际上就是有一个多往右走一格,所以维护前缀最小值
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define IL inline
#define rint register ll
#define rep(i,h,t) for (rint i=h;i<=t;i++)
#define dep(i,t,h) for (rint i=t;i>=h;i--)
const ll N=2e5;
const ll INF=1e18;
ll a[N],n,f[N],ans=INF;
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
ios::sync_with_stdio(false);
cin>>n;
rep(i,,n+) cin>>a[i];
ll mina=INF;
dep(i,n+,)
{
if (i==n+) f[i]=a[i];
else f[i]=f[i+]+a[i]+mina;
if (mina>=a[i])
{
ans=min(ans,f[i]*+(*i-)*a[i]);
mina=a[i];
}
}
cout<<ans<<endl;
return ;
}
【UOJ244】【UER #7】短路的更多相关文章
- 【uoj#244】[UER #7]短路 CDQ分治+斜率优化dp
题目描述 给出 $(2n+1)\times (2n+1)$ 个点,点 $(i,j)$ 的权值为 $a[max(|i-n-1|,|j-n-1|)]$ ,找一条从 $(1,1)$ 走到 $(2n+1,2n ...
- 【UOJ244】[UER7]短路
[题目大意] (2n+1)*(2n+1)的矩形,由里到外每一层都有一个相同的值.问从左上走到右小经过的点累和的最小值. [思路] 一眼就是贪心.首先能够想到的是,权值最小的那些边要尽可能夺走,所以必定 ...
- UOJ244 【UER #7】短路
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 【UOJ244】 【UER #7】短路(贪心)
传送门 uoj Solution 简单题? 考虑一条路径长什么样子,一定是经过某一个字母环的左上角,那么答案就很简单了. 我们记一个前缀最小值,这样子让他一路走下去一定是最优! 然后扫一遍就好了. 代 ...
- uoj#244. 【UER #7】短路
题目 orz myy 这个矩形对称的性质非常优美,所以我们只需要考虑一个\(\frac{1}{4}\)的矩阵,即一个倒三角形 现在我们要求的是从\((1,1)\)到三角形对边上每个点的最短路,不难发现 ...
- 【UOJ #244】【UER #7】短路
http://uoj.ac/contest/35/problem/244 对其他人来说好简单的一道题,我当时却不会做TWT 注定滚粗啊 题解很好的~ #include<cstdio> #i ...
- UOJ244 短路 贪心
正解:贪心 解题报告: 传送门! 贪心真的都是些神仙题,,,以我的脑子可能是不存在自己想出解这种事情了QAQ 然后直接港这道题解法趴,,, 首先因为这个是对称的,所以显然的是可以画一条斜右上的对角线, ...
- bzoj1001--最大流转最短路
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...
- 【USACO 3.2】Sweet Butter(最短路)
题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...
随机推荐
- Android开发该学习哪些东西?
开篇: 本人也是众多Android开发道路上行走的一员,听了不少大神的知乎live,自己也看了不少书,也和不少前辈交流过,所以在这里分享一下Android开发应该学习的书籍以及知识,当然,也包括一些方 ...
- codis3.2安装报错dashboard.go:369: [PANIC] call rpc create-proxy to dashboard 127.0.0.1:18080 failed的处理
codis3.2安装报错dashboard.go:369: [PANIC] call rpc create-proxy to dashboard 127.0.0.1:18080 failed的处理 执 ...
- java对图片进行透明化处理
package utils; import java.awt.Graphics2D; import java.awt.image.BufferedImage; import java.io.File; ...
- (一)七种AOP实现方法
在这里列表了我想到的在你的应用程序中加入AOP支持的所有方法.这里最主要的焦点是拦截,因为一旦有了拦截其它的事情都是细节. Approach 方法 Advantages 优点 Disadvantage ...
- jetty去掉项目名称访问
对于web项目,访问路径是否包含项目名称等修改访问路径的配置方式: 我所使用的是maven进行管理,只需要在pom.xml中进行如下配置 <!-- jetty插件 jetty:run--> ...
- 编译和运行dubbo-admin管理平台
下载 Github上下载最新的dubbo源码包并解压 修改ZooKeeper相关的配置 打开dubbo-admin/src/main/webapp/WEB-INF下的dubbo.p ...
- python基础--管理目录与文件
1) 文件夹 os.listdir() #显示文件夹下所有文件 os.getcwd() #获取当前工作目录 os.chdir() #切换目录 os.mkdir() #建立目录 os.path.exis ...
- python----动态规划
不能放弃治疗,每天都要进步!! 什么时候使用动态规划呢? 1. 求一个问题的最优解 2. 大问题可以分解为子问题,子问题还有重叠的更小的子问题 3. 整体问题最优解取决于子问题的最优解(状态转移方程) ...
- Confluence 6 配置 Office 连接器选项
具有系统管理员权限的用户可以配置 Office 连接器的属性和相关表现. 希望设置 Office 连接器的配置属性: 进入 > 基本配置(General Configuration) > ...
- Confluence 6 注册外部小工具
你可以从外部站点中注册小工具(Gadget)(例如 Jira 应用),你注册成功的小工具将会在 宏浏览器中显示出来,使用你 Confluence 站点的用户可以使用 Gadget Macro 来调用它 ...