题目地址:CF1101G (Zero XOR Subset)-less

线性基基础题

预处理一个前缀异或和 \(s_i\)

这样题目就变成了:在 \(n\) 个 \(s_i\) 中尽量选择多的数使选择的数产生的任意子集的异或和不为 \(0\) ,其中必须要选 \(s_n\)

如果 \(s_n=0\) ,则无解,输出 \(-1\)

否则,贪心,能选尽量选

代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 200006;
int n, a[N], s[N], b[31];

bool work(int x) {
    for (int i = 30; i >= 0; i--)
        if ((x >> i) & 1) {
            if (!b[i]) {
                b[i] = x;
                return 1;
            }
            x ^= b[i];
        }
    return 0;
}

int main() {
    cin >> n;
    for (int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        s[i] = s[i-1] ^ a[i];
    }
    if (!s[n]) {
        puts("-1");
        return 0;
    }
    int ans = 0;
    for (int i = n; i; i--)
        if (work(a[i])) ++ans;
    cout << ans << endl;
    return 0;
}

CF1101G (Zero XOR Subset)-less的更多相关文章

  1. CF1101G (Zero XOR Subset)-less 线性基

    传送门 既然每一次选择出来的都是一个子段,不难想到前缀和计算(然而我没有想到--) 设异或前缀和为\(x_i\),假设我们选出来的子段为\([1,i_1],(i_1,i_2],...,(i_{k-1} ...

  2. (Zero XOR Subset)-less-线性基

    (Zero XOR Subset)-less 题意 :把n个数分成多个集合,要求 不能有集合为空,最终不能有非空子集合异或值为0,尽可能划分的多一些. 思路 :非法情况就只有 n个数异或 为0,其他的 ...

  3. codeforces 1101G (Zero XOR Subset)-less 前缀异或+线性基

    题目传送门 题意:给出一个序列,试将其划分为尽可能多的非空子段,满足每一个元素出现且仅出现在其中一个子段中,且在这些子段中任取若干子段,它们包含的所有数的异或和不能为0. 思路:先处理出前缀异或,这样 ...

  4. CodeForces - 1101G :(Zero XOR Subset)-less(线性基)

    You are given an array a1,a2,…,an of integer numbers. Your task is to divide the array into the maxi ...

  5. Codeforces1101G (Zero XOR Subset)-less 【线性基】【贪心】

    题目分析: 考虑到这是一个区间的异或问题,不妨求出前缀和,令$sum[i] = Xor_{j=1}^{i}a[j]$. 对于区间$[l,r]$的异或结果,等于$sum[r] \oplus sum[l- ...

  6. G. (Zero XOR Subset)-less(线性基)

    题目链接:http://codeforces.com/contest/1101/problem/G 题目大意:给你n个数,然后让你把这n个数分成尽可能多的集合,要求,每个集合的值看做这个集合所有元素的 ...

  7. Educational Codeforces Round 58 A,B,C,D,E,G

    A. Minimum Integer 链接:http://codeforces.com/contest/1101/problem/A 代码: #include<bits/stdc++.h> ...

  8. Educational Codeforces Round 58

    D. GCD Counting 题意: 给出n个点的树,每个点有一个权值,找出一条最长的路径使得路径上所有的点的gcd>1 题解: gcd>1的一定不会有很多.所以暴力搞一下就行,不需要点 ...

  9. Codeforces1101 | EducationalRound58 | 瞎讲报告

    目录 Educational Codeforces Round 58 (Rated for Div. 2) A. Minimum Integer B. Accordion C. Division an ...

随机推荐

  1. 深入理解JS函数中this指针的指向

    函数在执行时,会在函数体内部自动生成一个this指针.谁直接调用产生这个this指针的函数,this就指向谁. 怎么理解指向呢,我认为指向就是等于.例如直接在js中输入下面的等式: console.l ...

  2. POJ1821 单调队列//ST表 优化dp

    http://poj.org/problem?id=1821 当我们在考虑内层循环j以及决策k的时候,我们可以把外层变量i看作定值,以此来优化dp状态转移方程. 题意 有n个工人准备铺m个连续的墙,每 ...

  3. win10默认壁纸位置

    win10默认壁纸的位置... --------- win10默认壁纸位置C:\Windows\Web\4K\Wallpaper\Windows win10 默认 锁屏壁纸C:\Windows\Web ...

  4. mysql清理binlog日志

    mysql的binlog日志过多过大,清理过程. 1.查看binlog日志 mysql> show binary logs; +------------------+-----------+ | ...

  5. java io系列20之 PipedReader和PipedWriter

    本章,我们学习PipedReader和PipedWriter.它们和“PipedInputStream和PipedOutputStream”一样,都可以用于管道通信. PipedWriter 是字符管 ...

  6. float clearfix

    Float float 属性的原本作用是: 为了实现文字环绕效果 float 父元素高度塌陷实现文字环绕效果 float 固定一列宽的自适应布局 float 多列布局` float 固定一列宽的自适应 ...

  7. 搭建Github博客:开始

    先看效果:ious.ml 记录使用hexo搭建个人博客的过程 至于在博客里记录什么内容,现在还没想好.已经熟悉了博客园,不想换. 1.概念 Github Pages Github Pages可以被认为 ...

  8. HDU 1892(书架统计 二维树状数组)

    题意是在二维平面上在一些位置上进行数据的增删改查操作,使用树状数组(了解树状数组点这里) 原来的树状数组在求区间和时是 sum( x, y ) = getsum( y ) - getsum( x - ...

  9. redis的安装与简单使用

    redis的安装与简单使用: Redis简介: redis的应用场景: 1.关于关系型数据库和nosql数据库 关系型数据库是基于关系表的数据库,最终会将数据持久化到磁盘上,而nosql数据     ...

  10. 解析ArcGis拓扑——根据拓扑错误记录提取shp文件、导出Excel表格

    在ArcGis拓扑检查的流程——以面重叠检查为例中讲述了如何在ArcGis进行拓扑检查与修改. 在实际操作中,有时我们还需要将ArcGis拓扑检查的结果制作成报告或者提取错误信息反馈作业方. 本文仍然 ...