原文:JxKing的博客 | JxKing Blog

前言

AutoML是指尽量不通过人来设定超参数,而是使用某种学习机制,来调节这些超参数。这些学习机制包括传统的贝叶斯优化,多臂老机(multi-armed bandit),进化算法,还有比较新的强化学习。

我将AutoML分为传统AutoML ,自动调节传统的机器学习算法的参数,比如随机森林,我们来调节它的max_depth, num_trees, criterion等参数。 还有一类AutoML,则专注深度学习。这类AutoML,不妨称之为深度AutoML ,与传统AutoML的差别是,现阶段深度AutoML,会将神经网络的超参数分为两类,一类是与训练有关的超参数,比如learning rate, regularization, momentum等;还有一类超参数,则可以总结为网络结构。对网络结构的超参数自动调节,也叫 Neural architecture search (nas) 。而针对训练的超参数,也是传统AutoML的自动调节,叫 Hyperparameter optimization (ho)

贝叶斯优化

贝叶斯优化是一种近似逼近的方法,用各种代理函数来拟合超参数与模型评价之间的关系,然后选择有希望的超参数组合进行迭代,最后得出效果最好的超参数组合。

算法流程

  1. 初始化,随机选择若干组参数x,训练模型,得到相应的模型评价指标y
  2. 用代理函数来拟合x,y
  3. 用采集函数来选择最佳的x*
  4. 将x*带入模型,得到 新的y,然后进入第2步

具体算法

算法 代理函数 采集函数 优缺点
BO 高斯过程 Expected Improvement 应用广泛,在低维空间表现出色
SMAC 回归随机森林 Upper Confidence Bound 对离散型变量表现出色
TPE 高斯混合模型 Expected Improvement 高维空间表现出色,有论文表明最实用

特点

  • 需要消耗大量资源及时间。由于需要至少几十次迭代,即需要训练几十次的模型,因而会造成大量资源、时间消耗。基于这个特点,可以说贝叶斯优化算法适合传统AutoML ,而不适合深度AutoML
  • 效果不稳定。由于初始化存在随机性,其效果不稳定。也有论文表明,贝叶斯优化算法并不显著优于随机搜索(random search)

Multi-armed Bandit

multi-armed bandit是非常经典的序列决策模型,要解决的问题是平衡“探索”(exploration)和“利用”(exploitation)。

举一个bandit例子,你有20个按钮,每个按钮按一次可能得到一块钱或者拿不到钱,同时每个按钮的得到一块钱的概率不同,而你在事前对这些概率一无所知。在你有1000次按按钮的机会下,呼和得到最大收益。

这类算法,通过将自动调参问题,转化为bandit问题,配置更多资源给表现更优异的参数模型。

具体算法

Hyperband是一个颇具代表的算法。总体思路我们由一个自动调节LeNet的例子来展示:

R=81代表总资源,\(\mu\) 代表每次筛选的比例,ni代表参数配置的组合数,ri代表资源数,这里代表一个epoch,第一行代表随机得到ni个参数配置,然后经过第ri次迭代之后,根据模型validation loss选择出top k个表现好的模型,继续下一行ri的训练。

特点

  1. Bandit思想还是很重要的,是一类针对资源配置的算法,可以有效避免资源浪费在很差的参数配置上。
  2. Bandit结合贝叶斯优化,就构成了传统的AutoML的核心,比如伯克利的这篇paper,或者今年cmu的atm 。事实上,在华为,我也搞了这方面的专利,核心也是Bandit与贝叶斯优化。
  3. Bandit同样适合于深度AutoML中nas任务,但是对ho任务的应用,我是存疑的,比如学习率lr 一大一小两组实验,在前期极有可能是大lr那组的loss下降快,如果用bandit判断这个lr优秀,而停止了另一组的实验,很有可能造成错误。因为大的学习率,在前期可能确实会加快收敛,但是一段时间后,可能就会震荡了,最后的收敛精度可能就很低。

进化算法

一般的进化算法其实大同小异,差别在如何选择变异,有比较细的变异,比如在Large-Scale Evolution of Image Classifiers 这篇文章中,就定义了非常具体的变异,比如有改变通道数量,改变filter大小,改变stride等等;而在Simple And Efficient Architecture Search for Convolutional Neural Networks这篇论文中,它的变异,就借鉴了现有公认的比较好的结构,加深网络就用conv-bn-relu3件套,加宽网络加大通道数量,增加skip connection。

这些进化算法在做自动模型选择时,每次迭代都不可避免的需要在整个数据集上跑若干个epoch,而每次迭代都有许多个变异,又需要很多次迭代,导致最后的训练时间太久。

fine-tune基础上的进化

Simple And Efficient Architecture Search for Convolutional Neural Networks 这篇论文提出,我们先用一个成熟的模型去训练(也可以fine-tune训练),然后在这个模型的基础上去变异,变异之后用fine-tune训练几个epoch即可。这带来两个好的结果:

  1. fine tune减少了大量的训练时间
  2. 我们最后拿出来的模型,至少不比成熟模型差

个人认为,这篇论文很有实际意义

辅助网络初始化参数

SMASH: One-Shot Model Architecture Search through HyperNetworks 在这篇论文中,介绍了一种利用辅助网络给不同的网络初始化参数,从而无需重训练的方法。

其大致流程是在一堆待搜索的网络结构中,随机挑选数据和网络结构,用辅助网络负责参数初始化,然后训练用梯度下降训练这个辅助网络。在该辅助网络训练的足够好之后,就可以用它给各个不同的网络初始化参数,然后测试validation loss,最后挑出最优的网络结构,从头开始正常训练。

该方法通过训练一次辅助网络,避免每个网络都需要训练的情况,使得训练时间大大减小。该方法非常具有参考意义

强化学习

强化学习在nas和ho两方面都有应用。

强化学习-自动网络结构搜索

Learning Transferable Architectures for Scalable Image Recognition

用RNN作为controller,产生网络结构,然后根据收敛精度调节rnn。

将整个网络分为两种cell,Normal cellReduction cell,每个cell有B个block组成,而一个cell由rnn生成的过程如图所示:

  1. 选择一个hidden layer A
  2. 选择一个hidden layer B
  3. 为A选择一个op
  4. 为B选择一个op
  5. 选择一个结合op
  6. 重复1-5步骤B次,生成一个cell

该方法现在cifar10上寻找到两种cell的结构,然后迁移到imagenet上。

值得注意的是,该方法虽然效果惊人,但是人为的提前设定非常多:

  1. 每个cell有B个block组成,B是人为设定的值,这里被设为了5;
  2. cell的数量及cell的排序顺序都是提前订好的;

因此在这个网络结构的搜索中,模型的探索空间有限,同时它在cifar10上进行训练,因此它的速度还不错。

强化学习-超参数

Neural Optimizer Search with Reinforcement Learning

用RNN作为optimizer的controller,产生optimizer,然后用小的cnn模型训练5个epoch,得到的val_acc作为reward,训练。

将每个optimizer抽象的表达为:

比如:

最后产生了两类optimizer:


MARSGGBO♥原创







2019-1-17

AutoML总结的更多相关文章

  1. AI AutoML

    AutoML 参考链接: https://arxiv.org/pdf/1810.13306.pdf http://nooverfit.com/wp/7%E4%B8%AA%E4%BD%A0%E5%8F% ...

  2. (转)AutoML for Data Augmentation

    AutoML for Data Augmentation 2019-04-01 09:26:19 This blog is copied from: https://blog.insightdatas ...

  3. 【转载】 什么是AutoML

    文章来源:企鹅号 - 仲耀晖的碎碎念 tzattack Studio presents 来源:Google AI Blog 编译:仲耀晖 ------------------------------- ...

  4. 【转载】 第四范式涂威威:AutoML技术现状与未来展望

    原文地址: https://www.jiqizhixin.com/articles/2018-07-12-17 -------------------------------------------- ...

  5. 第四范式涂威威:AutoML技术现状与未来展望

    以下内容是对AutoML技术现状与未来展望讲座的总结. 1.机器学习定义 <西瓜书>中的直观定义是:利用经验来改善系统的性能.(这里的经验一般是指数据) Mitchell在<Mach ...

  6. AUTOML --- Machine Learning for Automated Algorithm Design.

    自动算法的机器学习: Machine Learning for Automated Algorithm Design. http://www.ml4aad.org/ AutoML——降低机器学习门槛的 ...

  7. Auto-ML之自动化特征工程

    1. 引言 个人以为,机器学习是朝着更高的易用性.更低的技术门槛.更敏捷的开发成本的方向去发展,且Auto-ML或者Auto-DL的发展无疑是最好的证明.因此花费一些时间学习了解了Auto-ML领域的 ...

  8. AutoML技术现状与未来展望

    以下内容是对AutoML技术现状与未来展望讲座的总结. 1.机器学习定义 <西瓜书>中的直观定义是:利用经验来改善系统的性能.(这里的经验一般是指数据) Mitchell在<Mach ...

  9. AutoML相关论文

    本文为Awesome-AutoML-Papers的译文. 1.AutoML简介 Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它.然而,这些成果都很大程度上取决于人 ...

随机推荐

  1. mac host文件配置

    Shift+Command+G 三个组合按键,并输入 Hosts 文件的所在路径:/etc/hosts /private/etc/hosts

  2. vnc连接虚拟机中的CentOS7系统

    1.CentOS7 core安装gnome桌面 安装Gnome包# yum groupinstall "GNOME Desktop" "Graphical Adminis ...

  3. Linux 中用 dd 命令来测试硬盘读写速度

    dd 是 Linux/UNIX 下的一个非常有用的命令,作用是用指定大小的块拷贝一个文件,并在拷贝的同时进行指定的转换. dd 命令通用语法格式如下: dd if=path/to/input_file ...

  4. bzoj2243 树链剖分

    https://www.lydsy.com/JudgeOnline/problem.php?id=2243 新学的树剖,在维护的时候线段树维护区间内颜色数量以及左右两端的颜色.统计的时候区间合并时判断 ...

  5. kettle连接mysql数据库并进行数据分析

    1.数据库链接驱动 如果没有安装对应的数据库链接驱动,在数据库链接的过程中,可能会报某个数据库连接找不到的异常,因此需要下载对应驱动后(安装步骤可以参见“怎么在官网上下载java连接mysql的驱动j ...

  6. Java基础方法整理

    方法 9.1方法概述 方法就是用来完成解决某件事情或实现某个功能的办法 可以通过在程序代码中引用方法名称和所需的参数,实现在该程序中执行(或称调用)该方法.方法,一般都有一个返回值,用来作为事情的处理 ...

  7. 运维监控-Zabbix Server 使用QQ SMTP发送邮件报警及定制报警内容

    运维监控-Zabbix Server 使用QQ SMTP发送邮件报警及定制报警内容 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客采用腾讯邮箱,想必大家都对QQ很了解,所以 ...

  8. ActiveMQ详细入门使用教程

    ActiveMQ介绍 MQ是消息中间件,是一种在分布式系统中应用程序借以传递消息的媒介,常用的有ActiveMQ,RabbitMQ,kafka.ActiveMQ是Apache下的开源项目,完全支持JM ...

  9. 12.代理模式(Proxy Pattern)

    直接与间接:   人们对复杂的软件系统常有一种处理手法,即增加一层间接层,从而对系统获得一种更为灵活.满足特定需求的解决方案.                                      ...

  10. python 线程(其他方法,队列,线程池,协程 greenlet模块 gevent模块)

    1.线程的其他方法 from threading import Thread,current_thread import time import threading def f1(n): time.s ...