I. 向量梯度

假设有一个映射函数为\(f:R^n→R^m\)和一个向量\(x=[x_1,...,x_n]^T∈R^n\),那么对应的函数值的向量为\(f(x)=[f_1(x),...,f_m(x)]^T∈R^m\)。

现在考虑\(f\)对\(x_i\)的梯度为:\(\frac{\partial{f}}{\partial{x_i}}=[\frac{\partial{f_1}}{\partial{x_i}},...,\frac{\partial{f_m}}{\partial{x_i}}]^T∈R^m\)

所以有
\[
\begin{align}
\frac{df(x)}{dx}&=
\left[
\begin{matrix}
\frac{\partial{f(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f(x)}}{\partial{x_n}}
\end{matrix}
\right] \\
&=\left[
\begin{matrix}
\frac{\partial{f_1(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f_1(x)}}{\partial{x_n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial{f_m(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f_m(x)}}{\partial{x_n}} \\
\end{matrix}
\right] ∈R^{m×n} \\
\end{align}
\]

接下来给出Jacobian定义:

\(f:R^n→R^m\)的所有一阶偏导集合叫做Jacobian。Jacobian J 是一个\(m×n\)的矩阵,形式定义如下:
\[
\begin{align}
J&=\nabla_xf=\frac{df(x)}{dx} \\
&=\left[
\begin{matrix}
\frac{\partial{f(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f(x)}}{\partial{x_n}}
\end{matrix}
\right] \\
&=\left[
\begin{matrix}
\frac{\partial{f_1(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f_1(x)}}{\partial{x_n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial{f_m(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f_m(x)}}{\partial{x_n}} \\
\end{matrix}
\right] \\
x &= \left[
\begin{matrix}
x_1 \\
\vdots \\
x_n
\end{matrix}
\right],\,\,\, J(i,j)=\frac{\partial{f_i}}{\partial{x_j}}
\end{align}
\]

II. 矩阵梯度

其实和向量梯度类似,这里不再给出推导过程,直接给出一些重要的结果:

  • 如果\(f(x)∈R^{m×n},x∈R^{p×q}\),则\(\frac{\partial{f(x)}}{\partial{x}}∈R^{(m×n)×(p×q)}\)
  • 在机器学习中常用到的计算公式:

III. 高阶梯度

上面提到的都是一阶梯度,在实际应用中会涉及到高阶梯度。而常见的有二阶梯度

海森矩阵(Hessian) 是一个多变量实值函数的二阶偏导数组成的方阵。其形式如下:

以下内容参考海森矩阵

1. 在映射 \({\displaystyle f:\mathbb {R} ^{2}\to \mathbb {R} }\) 的应用

给定二阶导数连续的映射 \({\displaystyle f:\mathbb {R} ^{2}\to \mathbb {R} }\),海森矩阵的行列式,可用于分辨 \({\displaystyle f}\)的临界点是属于鞍点还是极值点。

对于 \({\displaystyle f}\) f的临界点 \({\displaystyle (x_{0},y_{0})}\)一点,有 \({\displaystyle {\frac {\partial f(x_{0},y_{0})}{\partial x}}={\frac {\partial f(x_{0},y_{0})}{\partial y}}=0}\),然而凭一阶导数不能判断它是鞍点、局部极大点还是局部极小点。海森矩阵可能解答这个问题。

\[{\displaystyle H={\begin{vmatrix}{\frac {\partial ^{2}f}{\partial x^{2}}}&{\frac {\partial ^{2}f}{\partial x\,\partial y}}\\\\{\frac {\partial ^{2}f}{\partial y\,\partial x}}&{\frac {\partial ^{2}f}{\partial y^{2}}}\end{vmatrix}}={\frac {\partial ^{2}f}{\partial x^{2}}}{\frac {\partial ^{2}f}{\partial y^{2}}}-({\frac {\partial ^{2}f}{\partial y\,\partial x}})^{2}}\]

  • H > 0:若 \({\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}>0}\),则 \({\displaystyle (x_{0},y_{0})})\)是局部极小点;若 \({\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}<0}\),则 \({\displaystyle (x_{0},y_{0})}\)是局部极大点。
  • H < 0:\({\displaystyle (x_{0},y_{0})}\)是鞍点。
  • H = 0:二阶导数无法判断该临界点的性质,得从更高阶的导数以泰勒公式考虑。

2. 在高维情况下的推广

当函数 \({\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} }\) 二阶连续可导时,Hessian矩阵H在临界点 \({\displaystyle x_{0}}\) 上是一个 \({\displaystyle n\times n}\)阶的对称矩阵。

  • 当H是正定矩阵时,临界点 \({\displaystyle x_{0}}\) 是一个局部的极小值。
  • 当H是负定矩阵时,临界点 \({\displaystyle x_{0}}\) 是一个局部的极大值。
  • H=0,需要更高阶的导数来帮助判断。
  • 在其余情况下,临界点 \({\displaystyle x_{0}}\) 不是局部极值

MARSGGBO♥原创







2018-12-24

【Math for ML】向量微积分(Vector Calculus)的更多相关文章

  1. <<Vector Calculus>>笔记

    现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...

  2. 【Math for ML】矩阵分解(Matrix Decompositions) (下)

    [Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...

  3. <Vector Calculus>(by Paul C, Matthews) Notes

    现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...

  4. R语言编程艺术# 数据类型向量(vector)

    R语言最基本的数据类型-向量(vector) 1.插入向量元素,同一向量中的所有的元素必须是相同的模式(数据类型),如整型.数值型(浮点数).字符型(字符串).逻辑型.复数型等.查看变量的类型可以用t ...

  5. 精解Mat类(一):基本数据类型-固定大小的 矩阵类(Matx) 向量类(Vector)

    一.基础数据类型 1.(基础)固定大小矩阵类 matx 说明: ①    基础矩阵是我个人增加的描述,相对于Mat矩阵类(存储图像信息的大矩阵)而言. ②    固定大小矩阵类必须在编译期间就知晓其维 ...

  6. R语言编程艺术#01#数据类型向量(vector)

    R语言最基本的数据类型-向量(vector) 1.插入向量元素,同一向量中的所有的元素必须是相同的模式(数据类型),如整型.数值型(浮点数).字符型(字符串).逻辑型.复数型等.查看变量的类型可以用t ...

  7. Silverlight & Blend动画设计系列十:Silverlight中的坐标系统(Coordinate System)与向量(Vector)运动

    如果我们习惯于数学坐标系,那么对于Silverlight中的坐标系可能会有些不习惯.因为在Silverlight中的坐标系与Flash中的坐标系一样,一切都的颠倒的.在标准的数学坐标系中,X轴表示水平 ...

  8. 向量容器vector操作

    1.向量容器vector 1.1 vector说明 进行vector操作前应添加头文件#include<vector>: vector是向量类型,可以容纳许多类型的数据,因此也被称为容器: ...

  9. 向量时钟Vector Clock in Riak

    Riak 是以 Erlang 编写的一个高度可扩展的分布式数据存储,Riak的实现是基于Amazon的Dynamo论文,Riak的设计目标之一就是高可用.Riak支持多节点构建的系统,每次读写请求不需 ...

随机推荐

  1. 打印流(PrintWriter )

    PrintWriter package cn.lijun.demo1; import java.io.File; import java.io.FileNotFoundException; impor ...

  2. Dubbo优雅关机原理

    Dubbo是通过JDK的ShutdownHook来完成优雅停机的 所以如果用户使用 kill -9 PID 等强制关闭命令,是不会执行优雅停机的 只有通过 kill PID时,才会执行 原理: · 服 ...

  3. VS2015快捷键大全

    Ctrl+E,D —-格式化全部代码 Ctrl+E,F —-格式化选中的代码 CTRL + SHIFT + B生成解决方案 CTRL + F7 生成编译 CTRL + O 打开文件 CTRL + SH ...

  4. bootstrap开发微票儿网站首页

    1.html代码 <!DOCTYPE html><html lang="en"><head> <meta charset="UT ...

  5. redis安全问题【原】

    前提 假设redis安装在 IP 地址为 192.168.0.123 的linux服务器 . 我的本机Win10操作系统 IP地址为 192.168.0.45 , 有一套java客户端代码可调用lin ...

  6. 自学python 8.

    1.有如下文件,a1.txt,里面的内容为:LNH是最好的培训机构,全心全意为学生服务,只为学生未来,不为牟利.我说的都是真的.哈哈分别完成以下的功能:a,将原文件全部读出来并打印.b,在原文件后面追 ...

  7. SQL 编程技巧

    Ø  简介 本文主要介绍编写 SQL 时的一些编程技巧,方便有时候忘了便于查看,主要包含以下内容: 1.   SQL 语句中使用 +=.-=.*=./= 运算符 2.   值为 NULL 的列或局部变 ...

  8. python中的深拷贝和浅拷贝

    python的复制,深拷贝和浅拷贝的区别   在python中,对象赋值实际上是对象的引用.当创建一个对象,然后把它赋给另一个变量的时候,python并没有拷贝这个对象,而只是拷贝了这个对象的引用 一 ...

  9. c# c/s 框架读取的配置文件时是app.exe.config

    c# c/s 框架读取的配置文件时是app.exe.config, 一般在bin中间中俄debug中或者Release中

  10. php函数:解决数组转对象时数组内中文乱码问题

    function to_urlencode(&$arr){//解决数组转对象时数组内中文乱码问题 foreach($arr as $key => $value){ if(is_array ...