FT of function $f(t)$ is to take integration of the product of $f(t)$ and $e^{-j\Omega t}$. By separating these two term into real and imaginary forms, the FT can be written as follow:

$\begin{align*}\mathcal{F}\Big( f(t) \Big) &= \int_{-\infty}^{\infty}f(t)e^{-j\Omega t}dt\\
&=\int_{-\infty}^{\infty}\big[f_R(t)+if_I(t)\big]\big[cos(-\Omega t)+isin(-\Omega t)\big]dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(-\Omega t)-f_I(t)sin(-\Omega t)+i\Big[f_R(t)sin(-\Omega t)+f_I(t)cos(-\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(-\Omega t)dt+i\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt+i\int_{-\infty}^{\infty}f_I(t)cos(-\Omega t)dt
\end{align*}$

Now, consider a function $g(t)=f(-t)$, and take the FT on function $g(t)$:

$\begin{align*}\mathcal{F}\Big( g(t) \Big) &= \int_{-\infty}^{\infty}g(t)e^{-j\Omega t}dt\\
&=\int_{-\infty}^{\infty}f(-t)e^{-j\Omega t}dt\\
&=\int_{\infty}^{-\infty}f(v)e^{-j\Omega(-v)}d(-v) \qquad letting\ v=-t\\
&=\int_{-\infty}^{\infty}f(v)e^{j\Omega v}dv\\
&=\int_{-\infty}^{\infty}\big[f_R(v)+if_I(v)\big]\big[cos(\Omega v)+isin(\Omega v)\big]dv\\
&=\int_{-\infty}^{\infty}\Big\{f_R(v)cos(\Omega v)-f_I(v)sin(\Omega v)+i\Big[f_R(v)sin(\Omega v)+f_I(v)cos(\Omega v)\Big]\Big\}dv\\
&=\int_{-\infty}^{\infty}f_R(v)cos(\Omega v)dv-\int_{-\infty}^{\infty}f_I(v)sin(\Omega v)dv+i\int_{-\infty}^{\infty}f_R(v)sin(\Omega v)dv+i\int_{-\infty}^{\infty}f_I(v)cos(\Omega v)dv\\
&=\int_{-\infty}^{\infty}f_R(v)cos(-\Omega v)dv-\int_{-\infty}^{\infty}f_I(v)sin(\Omega v)dv-i\int_{-\infty}^{\infty}f_R(v)sin(-\Omega v)dv+i\int_{-\infty}^{\infty}f_I(v)cos(\Omega v)dv\end{align*}$

Compare the derivations. Only if the function $f(t)$ is real ($f_I = 0$) can we receive the equations:

$\begin{align*}
\mathcal{F}\Big(f(t)\Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt+i\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt\\
\mathcal{F}\Big( f(-t) \Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt-i\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt\end{align*}$

Which can be easily concluded that if $f(t)$ is real, the FT of $f(t)$ is complex conjugate to the FT of $f(-t)$

$\color{red}{\mathcal{F}\Big(f(-t)\Big) = F^{*}(j\Omega) \qquad for\ f(t)\ is\ real}$

Take FT on the complex conjugate function $f^{*}(t) = f_R(t) – if_I(t)$

$\begin{align*}
\mathcal{F}\Big(f^*(t)\Big)
&=\int_{-\infty}^{\infty}f^*(t)e^{-j\Omega t}dt\\
&=\int_{-\infty}^{\infty}\Big[f_R(t)-if_I( t)\big]\big[cos(-\Omega t)+isin(-\Omega t)\Big]dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(-\Omega t)+f_I(t)sin(-\Omega t)+i\Big[f_R(t)sin(-\Omega t)-f_I(t)cos(-\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(\Omega t)-f_I(t)sin(\Omega t)+i\Big[-f_R(t)sin(\Omega t)-f_I(t)cos(\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(\Omega t)-f_I(t)sin(\Omega t)-i\Big[f_R(t)sin(\Omega t)+f_I(t)cos(\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}f_R(t)cos(\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(\Omega t)dt-i\left\{\int_{-\infty}^{\infty}f_R(t)sin(\Omega t)dt+\int_{-\infty}^{\infty}f_I(t)cos(\Omega t)dt\right\}\\
\end{align*}$

Compare the equations.

$\begin{align*}
\mathcal{F}\Big(f(t)\Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(-\Omega t)dt+i\left\{\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt+\int_{-\infty}^{\infty}f_I(t)cos(-\Omega t)dt\right\}\\
\mathcal{F}\Big(f^*(t)\Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(\Omega t)dt-i\left\{\int_{-\infty}^{\infty}f_R(t)sin(\Omega t)dt+\int_{-\infty}^{\infty}f_I(t)cos(\Omega t)dt\right\}\\
\end{align*}$

The sign of $\Omega$ and the sign of imaginary part have been changed. We can concluded that FT of the complex conjugate of function f is equal to the FT of the function f then do the complex conjugate and reverse on frequency domain.

$\color{red}{\mathcal{F}\Big(f^*(t)\Big) = F^*(-j\Omega)}$

Fourier Transform Complex Conjugate Discussion的更多相关文章

  1. 数字图像处理实验(5):PROJECT 04-01 [Multiple Uses],Two-Dimensional Fast Fourier Transform 标签: 图像处理MATLAB数字图像处理

    实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and ver ...

  2. 「学习笔记」Fast Fourier Transform

    前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是 ...

  3. 【OI向】快速傅里叶变换(Fast Fourier Transform)

    [OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 ​ 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. ​ (以下应用只针对OI) ​ 一句话:求多项式 ...

  4. 傅里叶变换 - Fourier Transform

    傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\o ...

  5. 短时傅里叶变换(Short Time Fourier Transform)原理及 Python 实现

    原理 短时傅里叶变换(Short Time Fourier Transform, STFT) 是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类, 其指定了任意信号随时间和频率变 ...

  6. 使用 scipy.fft 进行Fourier Transform:Python 信号处理

    摘要:Fourier transform 是一个强大的概念,用于各种领域,从纯数学到音频工程甚至金融. 本文分享自华为云社区<使用 scipy.fft 进行Fourier Transform:P ...

  7. 从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform)

    从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform) 一. 傅里叶级数(FS) 首先从最直观的开始,我们有一个信号\(x(t)\)(满足 ...

  8. 【manim】3b1b的"Almost" Fourier Transform复刻

    最近在做Fourier Transform的内容,记录一下今天下午的成果. 本文代码全部自行编写,需要math and music项目完整工程可以在gayhub上获取.(现在还没弄完,就先不发了.) ...

  9. Fast Fourier Transform ——快速傅里叶变换

    问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$ ...

随机推荐

  1. oracle 创建表空间TABLESPACE

    题外话: 在oracle中,我们的数据库用户都有一个默认表空间归属,当在该用户下创建表或其他对象时默认会将其归属在默认表空间: 不排除后期修改了用户默认表空间的情况存在,此后新加入的对象默认会放置在新 ...

  2. 开源框架bboss单点登录demo跑起来

    目前公司新项目要使用一个开源框架bboss的单点登录功能,要将此功能整合到新系统中去,所以我就学习了一下. 首先,进入这个bboss框架作者的博客中,找到相应的session共享,单点登录的博文,看了 ...

  3. 跨平台Redis可视化工具Web Redis Manager

    一.简介 最近因为工作需要,使用了一些单机版Redis的界面化管理工具,使用过程中那惨痛的体验真的只有用过的人才能体会:为此本人和小伙伴准备动手一个Redis可视化工具,但是因为小伙伴最近工作比较忙, ...

  4. 面试(一)-HashMap

    一.前言       其实这一面来的挺突然,也是意想不到的,这个要起源于BOSS直聘,很巧,其实也算是一种缘分吧,谢谢BOSS那个哥们,还是那句话来滨江我请你吃饭,身怀感激你总会遇到帮助你的人,只是这 ...

  5. .Net Core 在 Linux-Centos上的部署实战教程(三)

    绑定域名,利用Nginx反向代理来操作 1.安装Nginx yun install nginx 安装成功 2.启动nginx service nginx start 报报报错了~~·      运行 ...

  6. LINQ基本概念及误区

    LINQ基本概念: LINQ全名Language Integrated Query(语言集成查询),它允许我们通过C#(或VB)语言,以操作内存数据的方式,查询数据库. LINQ的由来: 传统上,对数 ...

  7. mysql自增id超大问题查询

    引言 小A正在balabala写代码呢,DBA小B突然发来了一条消息,"快看看你的用户特定信息表T,里面的主键,也就是自增id,都到16亿了,这才多久,在这样下去过不了多久主键就要超出范围了 ...

  8. 网络拓扑自动发掘之三层设备惯用的SNMP OID的含义

    原文地址:https://blog.csdn.net/maty_wang/article/details/81305070 1. ipNetToMediaIfIndex Name/OID: ipNet ...

  9. hdu3790 dijkstra+堆优化

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=3790 分析:dijkstra没有优化的话,复杂度是n*n,优化后的复杂度是m*logm,n是顶点数,m ...

  10. mysql索引及优化

    索引; 2.索引入门对于任何DBMS,索引都是进行优化的最主要的因素.对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降.如果对多列进行索引(组合索引),列的顺序非常 ...