Fourier Transform Complex Conjugate Discussion
FT of function $f(t)$ is to take integration of the product of $f(t)$ and $e^{-j\Omega t}$. By separating these two term into real and imaginary forms, the FT can be written as follow:
$\begin{align*}\mathcal{F}\Big( f(t) \Big) &= \int_{-\infty}^{\infty}f(t)e^{-j\Omega t}dt\\
&=\int_{-\infty}^{\infty}\big[f_R(t)+if_I(t)\big]\big[cos(-\Omega t)+isin(-\Omega t)\big]dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(-\Omega t)-f_I(t)sin(-\Omega t)+i\Big[f_R(t)sin(-\Omega t)+f_I(t)cos(-\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(-\Omega t)dt+i\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt+i\int_{-\infty}^{\infty}f_I(t)cos(-\Omega t)dt
\end{align*}$
Now, consider a function $g(t)=f(-t)$, and take the FT on function $g(t)$:
$\begin{align*}\mathcal{F}\Big( g(t) \Big) &= \int_{-\infty}^{\infty}g(t)e^{-j\Omega t}dt\\
&=\int_{-\infty}^{\infty}f(-t)e^{-j\Omega t}dt\\
&=\int_{\infty}^{-\infty}f(v)e^{-j\Omega(-v)}d(-v) \qquad letting\ v=-t\\
&=\int_{-\infty}^{\infty}f(v)e^{j\Omega v}dv\\
&=\int_{-\infty}^{\infty}\big[f_R(v)+if_I(v)\big]\big[cos(\Omega v)+isin(\Omega v)\big]dv\\
&=\int_{-\infty}^{\infty}\Big\{f_R(v)cos(\Omega v)-f_I(v)sin(\Omega v)+i\Big[f_R(v)sin(\Omega v)+f_I(v)cos(\Omega v)\Big]\Big\}dv\\
&=\int_{-\infty}^{\infty}f_R(v)cos(\Omega v)dv-\int_{-\infty}^{\infty}f_I(v)sin(\Omega v)dv+i\int_{-\infty}^{\infty}f_R(v)sin(\Omega v)dv+i\int_{-\infty}^{\infty}f_I(v)cos(\Omega v)dv\\
&=\int_{-\infty}^{\infty}f_R(v)cos(-\Omega v)dv-\int_{-\infty}^{\infty}f_I(v)sin(\Omega v)dv-i\int_{-\infty}^{\infty}f_R(v)sin(-\Omega v)dv+i\int_{-\infty}^{\infty}f_I(v)cos(\Omega v)dv\end{align*}$
Compare the derivations. Only if the function $f(t)$ is real ($f_I = 0$) can we receive the equations:
$\begin{align*}
\mathcal{F}\Big(f(t)\Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt+i\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt\\
\mathcal{F}\Big( f(-t) \Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt-i\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt\end{align*}$
Which can be easily concluded that if $f(t)$ is real, the FT of $f(t)$ is complex conjugate to the FT of $f(-t)$
$\color{red}{\mathcal{F}\Big(f(-t)\Big) = F^{*}(j\Omega) \qquad for\ f(t)\ is\ real}$
Take FT on the complex conjugate function $f^{*}(t) = f_R(t) – if_I(t)$
$\begin{align*}
\mathcal{F}\Big(f^*(t)\Big)
&=\int_{-\infty}^{\infty}f^*(t)e^{-j\Omega t}dt\\
&=\int_{-\infty}^{\infty}\Big[f_R(t)-if_I( t)\big]\big[cos(-\Omega t)+isin(-\Omega t)\Big]dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(-\Omega t)+f_I(t)sin(-\Omega t)+i\Big[f_R(t)sin(-\Omega t)-f_I(t)cos(-\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(\Omega t)-f_I(t)sin(\Omega t)+i\Big[-f_R(t)sin(\Omega t)-f_I(t)cos(\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(\Omega t)-f_I(t)sin(\Omega t)-i\Big[f_R(t)sin(\Omega t)+f_I(t)cos(\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}f_R(t)cos(\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(\Omega t)dt-i\left\{\int_{-\infty}^{\infty}f_R(t)sin(\Omega t)dt+\int_{-\infty}^{\infty}f_I(t)cos(\Omega t)dt\right\}\\
\end{align*}$
Compare the equations.
$\begin{align*}
\mathcal{F}\Big(f(t)\Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(-\Omega t)dt+i\left\{\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt+\int_{-\infty}^{\infty}f_I(t)cos(-\Omega t)dt\right\}\\
\mathcal{F}\Big(f^*(t)\Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(\Omega t)dt-i\left\{\int_{-\infty}^{\infty}f_R(t)sin(\Omega t)dt+\int_{-\infty}^{\infty}f_I(t)cos(\Omega t)dt\right\}\\
\end{align*}$
The sign of $\Omega$ and the sign of imaginary part have been changed. We can concluded that FT of the complex conjugate of function f is equal to the FT of the function f then do the complex conjugate and reverse on frequency domain.
$\color{red}{\mathcal{F}\Big(f^*(t)\Big) = F^*(-j\Omega)}$
Fourier Transform Complex Conjugate Discussion的更多相关文章
- 数字图像处理实验(5):PROJECT 04-01 [Multiple Uses],Two-Dimensional Fast Fourier Transform 标签: 图像处理MATLAB数字图像处理
实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and ver ...
- 「学习笔记」Fast Fourier Transform
前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是 ...
- 【OI向】快速傅里叶变换(Fast Fourier Transform)
[OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. (以下应用只针对OI) 一句话:求多项式 ...
- 傅里叶变换 - Fourier Transform
傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\o ...
- 短时傅里叶变换(Short Time Fourier Transform)原理及 Python 实现
原理 短时傅里叶变换(Short Time Fourier Transform, STFT) 是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类, 其指定了任意信号随时间和频率变 ...
- 使用 scipy.fft 进行Fourier Transform:Python 信号处理
摘要:Fourier transform 是一个强大的概念,用于各种领域,从纯数学到音频工程甚至金融. 本文分享自华为云社区<使用 scipy.fft 进行Fourier Transform:P ...
- 从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform)
从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform) 一. 傅里叶级数(FS) 首先从最直观的开始,我们有一个信号\(x(t)\)(满足 ...
- 【manim】3b1b的"Almost" Fourier Transform复刻
最近在做Fourier Transform的内容,记录一下今天下午的成果. 本文代码全部自行编写,需要math and music项目完整工程可以在gayhub上获取.(现在还没弄完,就先不发了.) ...
- Fast Fourier Transform ——快速傅里叶变换
问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$ ...
随机推荐
- CentOS下安装Apache
CentOS下安装Apache,首先在用户状态下使用su root命令切换到超级管理员界面,让后开启终端,进行apache的安装过程. [root@localhost centos]# yum ins ...
- ZOJ - 2423-Fractal
A fractal is an object or quantity that displays self-similarity, in a somewhat technical sense, on ...
- 无预挖无ICO-潜力币XDAG最强攻略
更新下XDAG上交易所了,当时看好这个币才推荐的,那时场外才2毛不到,现在涨到9毛一个了... https://www.coinbat.com/trade/panel/xdag... VBitEX [ ...
- Vue常规后台系统,路由懒加载实现基于菜单数据并解耦
路由依赖菜单 场景:文件名与路由组件名完全一致(随便大小写均可) 菜单使用一套,路由又存在一套,这样就很不舒服,于是做了如下处理: 尝试不用懒加载发现有难度,使用懒加载就很轻松了 data.js ex ...
- 字典 dict
# --------------------------我愿作一叶小舟,驶向远方.----------------------------------------------------------- ...
- 第四次oo博客
论述测试与正确性论证的效果差异 单元测试利用测试者构造的测试用例来检查类或方法的正确性,一般来说所需要测试的用例是无穷多的,通过人为构造代表性的测试用例来尽量测试所有代码.测试的优点在于不易出错,只要 ...
- 【转】ubuntu 双机热备
1.关于软件安装 sudo apt-get install libssl-dev sudo apt-get install openssl sudo apt-get install libpopt-d ...
- eclipse、myeclipse写类时,自动生成注释
在类的上边/**+enter自动生成注释. 设置方法:Window--Prefences--Java--Code Style--Code Templates--Comments--Types--Edi ...
- org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You have an error in your SQL syntax; check the manu
这个是sql 语句 错误 仔细检查 SQL语句是否写错了 org.apache.ibatis.exceptions.PersistenceException: ### Error queryi ...
- JavaScript对象访问器属性
对象访问器就是setter和getter,他们的作用就是 提供另外一种方法来获取或者设置对象的属性值, 并且在获取和设置的时候,可以用一定的其他操作. 看下面代码: <script> va ...