新版的MongoDB中的Explain已经变样了

Explain支持三种Mode

queryPlanner Mode

db.collection.explain()  默认mode是queryPlanner,返回queryPlanner信息

executionStats Mode

当前mode返回queryPlanner和executionStats信息

allPlansExecution Mode

更加详细的信息~

比如:我这里有10万数据,做一个查询

db.my_collection.stats()
{
"ns" : "test.my_collection",
"size" : ,
"count" : 100500,
"avgObjSize" : ,
"storageSize" : ,
"capped" : false,
"wiredTiger" : {
"metadata" : {
"formatVersion" :
},
"creationString" : "access_pattern_hint=none,allocation_size=4KB,app_metadata=(formatVersion=1),assert=(commit_timestamp=none,read_timestamp=none),block_allocation=best,block_compressor=snappy,cache_resident=false,checksum=on,colgroups=,collator=,columns=,dictionary=0,encryption=(keyid=,name=),exclusive=false,extractor=,format=btree,huffman_key=,huffman_value=,ignore_in_memory_cache_size=false,immutable=false,internal_item_max=0,internal_key_max=0,internal_key_truncate=true,internal_page_max=4KB,key_format=q,key_gap=10,leaf_item_max=0,leaf_key_max=0,leaf_page_max=32KB,leaf_value_max=64MB,log=(enabled=true),lsm=(auto_throttle=true,bloom=true,bloom_bit_count=16,bloom_config=,bloom_hash_count=8,bloom_oldest=false,chunk_count_limit=0,chunk_max=5GB,chunk_size=10MB,merge_custom=(prefix=,start_generation=0,suffix=),merge_max=15,merge_min=0),memory_page_max=10m,os_cache_dirty_max=0,os_cache_max=0,prefix_compression=false,prefix_compression_min=4,source=,split_deepen_min_child=0,split_deepen_per_child=0,split_pct=90,type=file,value_format=u",
"type" : "file",
"uri" : "statistics:table:collection-8--701343360468677485",
"LSM" : {
"bloom filter false positives" : ,
"bloom filter hits" : ,
"bloom filter misses" : ,
"bloom filter pages evicted from cache" : ,
"bloom filter pages read into cache" : ,
"bloom filters in the LSM tree" : ,
"chunks in the LSM tree" : ,
"highest merge generation in the LSM tree" : ,
"queries that could have benefited from a Bloom filter that did not exist" : ,
"sleep for LSM checkpoint throttle" : ,
"sleep for LSM merge throttle" : ,
"total size of bloom filters" :
},
"block-manager" : {
"allocations requiring file extension" : ,
"blocks allocated" : ,
"blocks freed" : ,
"checkpoint size" : ,
"file allocation unit size" : ,
"file bytes available for reuse" : ,
"file magic number" : ,
"file major version number" : ,
"file size in bytes" : ,
"minor version number" :
},
"btree" : {
"btree checkpoint generation" : ,
"column-store fixed-size leaf pages" : ,
"column-store internal pages" : ,
"column-store variable-size RLE encoded values" : ,
"column-store variable-size deleted values" : ,
"column-store variable-size leaf pages" : ,
"fixed-record size" : ,
"maximum internal page key size" : ,
"maximum internal page size" : ,
"maximum leaf page key size" : ,
"maximum leaf page size" : ,
"maximum leaf page value size" : ,
"maximum tree depth" : ,
"number of key/value pairs" : ,
"overflow pages" : ,
"pages rewritten by compaction" : ,
"row-store internal pages" : ,
"row-store leaf pages" :
},
"cache" : {
"bytes currently in the cache" : ,
"bytes read into cache" : ,
"bytes written from cache" : ,
"checkpoint blocked page eviction" : ,
"data source pages selected for eviction unable to be evicted" : ,
"eviction walk passes of a file" : ,
"eviction walk target pages histogram - 0-9" : ,
"eviction walk target pages histogram - 10-31" : ,
"eviction walk target pages histogram - 128 and higher" : ,
"eviction walk target pages histogram - 32-63" : ,
"eviction walk target pages histogram - 64-128" : ,
"eviction walks abandoned" : ,
"eviction walks gave up because they restarted their walk twice" : ,
"eviction walks gave up because they saw too many pages and found no candidates" : ,
"eviction walks gave up because they saw too many pages and found too few candidates" : ,
"eviction walks reached end of tree" : ,
"eviction walks started from root of tree" : ,
"eviction walks started from saved location in tree" : ,
"hazard pointer blocked page eviction" : ,
"in-memory page passed criteria to be split" : ,
"in-memory page splits" : ,
"internal pages evicted" : ,
"internal pages split during eviction" : ,
"leaf pages split during eviction" : ,
"modified pages evicted" : ,
"overflow pages read into cache" : ,
"page split during eviction deepened the tree" : ,
"page written requiring lookaside records" : ,
"pages read into cache" : ,
"pages read into cache after truncate" : ,
"pages read into cache after truncate in prepare state" : ,
"pages read into cache requiring lookaside entries" : ,
"pages requested from the cache" : ,
"pages seen by eviction walk" : ,
"pages written from cache" : ,
"pages written requiring in-memory restoration" : ,
"tracked dirty bytes in the cache" : ,
"unmodified pages evicted" :
},
"cache_walk" : {
"Average difference between current eviction generation when the page was last considered" : ,
"Average on-disk page image size seen" : ,
"Average time in cache for pages that have been visited by the eviction server" : ,
"Average time in cache for pages that have not been visited by the eviction server" : ,
"Clean pages currently in cache" : ,
"Current eviction generation" : ,
"Dirty pages currently in cache" : ,
"Entries in the root page" : ,
"Internal pages currently in cache" : ,
"Leaf pages currently in cache" : ,
"Maximum difference between current eviction generation when the page was last considered" : ,
"Maximum page size seen" : ,
"Minimum on-disk page image size seen" : ,
"Number of pages never visited by eviction server" : ,
"On-disk page image sizes smaller than a single allocation unit" : ,
"Pages created in memory and never written" : ,
"Pages currently queued for eviction" : ,
"Pages that could not be queued for eviction" : ,
"Refs skipped during cache traversal" : ,
"Size of the root page" : ,
"Total number of pages currently in cache" :
},
"compression" : {
"compressed pages read" : ,
"compressed pages written" : ,
"page written failed to compress" : ,
"page written was too small to compress" : ,
"raw compression call failed, additional data available" : ,
"raw compression call failed, no additional data available" : ,
"raw compression call succeeded" :
},
"cursor" : {
"bulk-loaded cursor-insert calls" : ,
"create calls" : ,
"cursor-insert key and value bytes inserted" : ,
"cursor-remove key bytes removed" : ,
"cursor-update value bytes updated" : ,
"cursors cached on close" : ,
"cursors reused from cache" : ,
"insert calls" : ,
"modify calls" : ,
"next calls" : ,
"prev calls" : ,
"remove calls" : ,
"reserve calls" : ,
"reset calls" : ,
"restarted searches" : ,
"search calls" : ,
"search near calls" : ,
"truncate calls" : ,
"update calls" :
},
"reconciliation" : {
"dictionary matches" : ,
"fast-path pages deleted" : ,
"internal page key bytes discarded using suffix compression" : ,
"internal page multi-block writes" : ,
"internal-page overflow keys" : ,
"leaf page key bytes discarded using prefix compression" : ,
"leaf page multi-block writes" : ,
"leaf-page overflow keys" : ,
"maximum blocks required for a page" : ,
"overflow values written" : ,
"page checksum matches" : ,
"page reconciliation calls" : ,
"page reconciliation calls for eviction" : ,
"pages deleted" :
},
"session" : {
"cached cursor count" : ,
"object compaction" : ,
"open cursor count" :
},
"transaction" : {
"update conflicts" :
}
},
"nindexes" : ,
"totalIndexSize" : ,
"indexSizes" : {
"_id_" :
},
"ok" :
}

以上是查看表信息的。。

下面查询id为25000的数据,我们以executionStats Mode 来查看

db.my_collection.find({_id:{$eq:}})
{ "_id" : NumberLong(), "name" : "Book-25000", "_class" : "com.example.demo.entity.Book" }
db.my_collection.explain("executionStats").find({_id:{$eq:}})
{
"queryPlanner" : {
"plannerVersion" : ,
"namespace" : "test.my_collection",
"indexFilterSet" : false,
"parsedQuery" : {
"_id" : {
"$eq" :
}
},
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"_id" :
},
"indexName" : "_id_",
"isMultiKey" : false,
"multiKeyPaths" : {
"_id" : [ ]
},
"isUnique" : true,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : ,
"direction" : "forward",
"indexBounds" : {
"_id" : [
"[25000.0, 25000.0]"
]
}
}
},
"rejectedPlans" : [ ]
},
"executionStats" : {
"executionSuccess" : true,
"nReturned" : ,
"executionTimeMillis" : ,
"totalKeysExamined" : ,
"totalDocsExamined" : ,
"executionStages" : {
"stage" : "FETCH",
"nReturned" : ,
"executionTimeMillisEstimate" : ,
"works" : ,
"advanced" : ,
"needTime" : ,
"needYield" : ,
"saveState" : ,
"restoreState" : ,
"isEOF" : ,
"invalidates" : ,
"docsExamined" : ,
"alreadyHasObj" : ,
"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : ,
"executionTimeMillisEstimate" : ,
"works" : ,
"advanced" : ,
"needTime" : ,
"needYield" : ,
"saveState" : ,
"restoreState" : ,
"isEOF" : ,
"invalidates" : ,
"keyPattern" : {
"_id" :
},
"indexName" : "_id_",
"isMultiKey" : false,
"multiKeyPaths" : {
"_id" : [ ]
},
"isUnique" : true,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : ,
"direction" : "forward",
"indexBounds" : {
"_id" : [
"[25000.0, 25000.0]"
]
},
"keysExamined" : ,
"seeks" : ,
"dupsTested" : ,
"dupsDropped" : ,
"seenInvalidated" :
}
}
},
"serverInfo" : {
"host" : "——",
"port" : ,
"version" : "3.6.5",
"gitVersion" : "a20ecd3e3a174162052ff99913bc2ca9a839d618"
},
"ok" :
}

下面解释一下关心的参数:

explain.executionStats.nReturned         查询匹配的文档数

explain.executionStats.executionTimeMillis    查询所需要的时间(单位为毫秒)

explain.executionStats.totalKeysExamined    扫描的索引数

explain.executionStats.totalDocsExamined    扫描的文档数

explain.executionStats.allPlansExecution    只有以allPlansExecution模式运行才会显示这个字段

上面查询,用到了索引,匹配的文档数为1,时间为0(因为没有费力),索引数为1,扫描的文档数为1

那么下面我计划一个笨查询

db.my_collection.explain("executionStats").find()
{
"queryPlanner" : {
"plannerVersion" : ,
"namespace" : "test.my_collection",
"indexFilterSet" : false,
"parsedQuery" : { },
"winningPlan" : {
"stage" : "COLLSCAN",
"direction" : "forward"
},
"rejectedPlans" : [ ]
},
"executionStats" : {
"executionSuccess" : true,
"nReturned" : ,
"executionTimeMillis" : ,
"totalKeysExamined" : ,
"totalDocsExamined" : ,
"executionStages" : {
"stage" : "COLLSCAN",
"nReturned" : ,
"executionTimeMillisEstimate" : ,
"works" : ,
"advanced" : ,
"needTime" : ,
"needYield" : ,
"saveState" : ,
"restoreState" : ,
"isEOF" : ,
"invalidates" : ,
"direction" : "forward",
"docsExamined" :
}
},
"serverInfo" : {
"host" : "FC001977PC1",
"port" : ,
"version" : "3.6.5",
"gitVersion" : "a20ecd3e3a174162052ff99913bc2ca9a839d618"
},
"ok" :
}

这样数据就明显一点了,不过话说回来,查这么多数据只用了39毫秒,的确挺牛逼的

更具体的说明见官网:https://docs.mongodb.com/manual/reference/method/db.collection.explain/#db.collection.explain

PS:无意间在官网上发现在线练习的控制台:https://docs.mongodb.com/manual/tutorial/insert-documents/

mongoDB-Explain的更多相关文章

  1. mongodb .explain('executionStats') 查询性能分析(转)

    mongodb性能分析方法:explain() 为了演示的效果,我们先来创建一个有200万个文档的记录.(我自己的电脑耗了15分钟左右插入完成.如果你想插更多的文档也没问题,只要有耐心等就可以了.) ...

  2. MongoDB 学习笔记之 分析器和explain

    MongoDB分析器: 检测MongoDB分析器是否打开: db.getProfilingLevel() 0表示没有打开 1表示打开了,并且如果查询的执行时间超过了第二个参数毫秒(ms)为单位的最大查 ...

  3. MongoDB基础教程系列--第六篇 MongoDB 索引

    使用索引可以大大提高文档的查询效率.如果没有索引,会遍历集合中所有文档,才能找到匹配查询语句的文档.这样遍历集合中整个文档的方式是非常耗时的,特别是处理大数据时,耗时几十秒甚至几分钟都是有可能的. 创 ...

  4. MongoDB学习笔记(五)

    MongoDB 查看执行计划 MongoDB 中的 explain() 函数可以帮助我们查看查询相关的信息,这有助于我们快速查找到搜索瓶颈进而解决它,本文我们就来看看 explain() 的一些用法及 ...

  5. mongodb之使用explain和hint性能分析和优化

    当你第一眼看到explain和hint的时候,第一个反应就是mysql中所谓的这两个关键词,确实可以看出,这个就是在mysql中借鉴过来的,既然是借鉴 过来的,我想大家都知道这两个关键字的用处,话不多 ...

  6. MongoDB性能篇之创建索引,组合索引,唯一索引,删除索引和explain执行计划

    这篇文章主要介绍了MongoDB性能篇之创建索引,组合索引,唯一索引,删除索引和explain执行计划的相关资料,需要的朋友可以参考下 一.索引 MongoDB 提供了多样性的索引支持,索引信息被保存 ...

  7. MongoDB的学习--explain()和hint()

    Explain 从之前的文章中,我们可以知道explain()能够提供大量与查询相关的信息.对于速度比较慢的查询来说,这是最重要的诊断工具之一.通过查看一个查询的explain()输出信息,可以知道查 ...

  8. Springdata mongodb 版本兼容 引起 Error [The 'cursor' option is required, except for aggregate with the explain argument

    在Spring data mongodb 中使用聚合抛出异常 mongodb版本 为 3.6 org.springframework.dao.InvalidDataAccessApiUsageExce ...

  9. MongoDB 索引 explain 分析查询速度

    一.索引基础索引是对数据库表中一列或多列的值进行排序的一种结构,可以让我们查询数据库变得更快.MongoDB 的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的查询优化技巧.下面是创建索引 ...

  10. MongoDB中的explain和hint提的使用

    一.简介 这里简单介绍一下各个工具的使用场景,一般用mysql,redis,mongodb做存储层,hadoop,spark做大数据分析. mysql适合结构化数据,类似excel表格一样定义严格的数 ...

随机推荐

  1. Python——Radiobutton,Checkbutton参数说明

    anchor  : 文本位置: background(bg) : 背景色: foreground(fg) :前景色: borderwidth :  边框宽度: width   : 组件的宽度: hei ...

  2. Web API2 使用默认Identity

    当您选择个人账户在Web API项目模板,项目包含一个令牌授权服务器验证用户凭证和问题.下面的图显示了相同的凭证流的Web API组件. 发送一个未经授权的请求 首先,运行应用程序并单击按钮调用的AP ...

  3. luogu3702-[SDOI2017]序列计数

    Description Alice想要得到一个长度为nn的序列,序列中的数都是不超过mm的正整数,而且这nn个数的和是pp的倍数. Alice还希望,这nn个数中,至少有一个数是质数. Alice想知 ...

  4. 学习Linux系统的态度及技巧

    Linux作为一种简单快捷的操作系统,现在被广泛的应用.也适合越来越多的计算机爱好者学习和使用.但是对于Linux很多人可能认为很难,觉得它很神秘,从而对其避而远之,但事实真的是这样么?linux真的 ...

  5. MySQL各版本解释和下载

    MySQL 的官网下载地址:http://www.mysql.com/downloads/ 个人理解: 1.不要再纠结是否是5.1还是5.5.5.6.5.7这些,一般选择时不要选择太新,选择5.1或者 ...

  6. linux缺失gcc的安装方法

    linux安装gcc操作 1.查看linux是否有gcc文件 这个是没有挂载的 2. 使用df,查看系统光盘的挂载位置 3.卸载分区 umount /dev/sr0 4.将redhat系统光盘重新载入 ...

  7. Codeforces986E Prince's Problem 【虚树】【可持久化线段树】【树状数组】

    我很喜欢这道题. 题目大意: 给出一棵带点权树.对每个询问$ u,v,x $,求$\prod_{i \in P(u,v)}gcd(ai,x)$.其中$ P(u,v) $表示$ u $到$ v $的路径 ...

  8. Matplotlib学习---用matplotlib画折线图(line chart)

    这里利用Jake Vanderplas所著的<Python数据科学手册>一书中的数据,学习画图. 数据地址:https://raw.githubusercontent.com/jakevd ...

  9. JOI 2018 Final 题解

    题目列表:https://loj.ac/problems/search?keyword=JOI+2018+Final T1 寒冬暖炉 贪心 暴力考虑每相邻两个人之间的间隔,从小到大选取即可 #incl ...

  10. HDOJ5551 Huatuo's Medicine

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5551 题目大意:... 题目思路:乱搞?模拟? #include <stdio.h> vo ...