直接赋题目。。。。。

 

题目描述

在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:

1 .路径上的所有点的出边所指向的点都直接或间接与终点连通。

2 .在满足条件1 的情况下使路径最短。

注意:图G 中可能存在重边和自环,题目保证终点没有出边。

请你输出符合条件的路径的长度。

输入输出格式

输入格式:

输入文件名为road .in。

第一行有两个用一个空格隔开的整数n 和m ,表示图有n 个点和m 条边。

接下来的m 行每行2 个整数x 、y ,之间用一个空格隔开,表示有一条边从点x 指向点y 。

最后一行有两个用一个空格隔开的整数s 、t ,表示起点为s ,终点为t 。

输出格式:

输出文件名为road .out 。

输出只有一行,包含一个整数,表示满足题目᧿述的最短路径的长度。如果这样的路径不存在,输出- 1 。

输入输出样例

输入样例#1:

3 2
1 2
2 1
1 3
输出样例#1:

-1
输入样例#2:

6 6
1 2
1 3
2 6
2 5
4 5
3 4
1 5
输出样例#2:

3

对于一般的这种没有权值的有向图,一般都会想到跑一边bfs,用一个数组记录花费比如我)。

然而这道题的不同之处在于

1 .路径上的所有点的出边所指向的点都直接或间接与终点连通。

如图 按照题目中所述

    2可以到达T,3也可以到达T,但是选择路径时可以选择3,不能选择2。

    原因在于2有一个子节点为1,而1不能到达T,所以不能选择2。

清楚了这个之后,思路基本上就有了(因为我太弱,思路可能不太完美)

  1. 首先,存图时,存一个反图,便于后边从t开始的bfs
  2. 从t开始bfs一次,找出所有能到达t的点
  3. 讲不能到达t的父节点和此节点标记为不能走
  4. 最后,从s开始bfs一次,只走能走的点,并用一个数组记录路径长

最后附上代码

 #include<cstdio>
#include<iostream>
#include<queue>
using namespace std;
queue<int>q1,q2;
struct node{
int u,v,nxt;
}a[],b[];
int n,m,head1[],head2[],vis1[],s,t,vis2[],vis3[];
int main()
{
scanf("%d%d",&n,&m);
for(int i=,x,y;i<=m;++i)
{
scanf("%d%d",&x,&y);
if(x!=y)
{
a[i].u=x,a[i].v=y,a[i].nxt=head1[x];//用a来存正向图
head1[x]=i;
b[i].u=y,b[i].v=x,b[i].nxt=head2[y];//b用来存反向图
head2[y]=i;
} }
scanf("%d%d",&s,&t);
q2.push(t);
vis2[t]=;
while(!q2.empty())//从t开始一遍bfs,用vis2记录所有能到达t的点(因为是反图嘛)
{
int qq=q2.front();
q2.pop();
for(int i=head2[qq];i;i=b[i].nxt)
{
int v=b[i].v;
if(!vis2[v])
{
vis2[v]=;
q2.push(v);
}
} }
for(int i=;i<=n;++i)
{
vis3[i]=;
}
for(int i=;i<=m;++i)//将不能到达的节点及其父节点变为不能到达,
{
if(!vis2[a[i].v]) vis3[a[i].u]=vis3[a[i].v]=;//用vis3记录(不用vis2是为了防止后效性,即前面的赋值影响后面,导致vis2全变为0)
}
q1.push(s);
vis1[s]=;
while(!q1.empty())//从s开始一遍bfs,
{
int qq=q1.front();
q1.pop();
for(int i=head1[qq];i;i=a[i].nxt)
{
int v=a[i].v;
if(v==t)//搜到了t就将其路径长输出
{
printf("%d",vis1[a[i].u]);//因为vis[3]初值为1,所以此处不用+1;
return ;
}
else if(vis3[v]&&!vis1[v])//只走vis3中标记为能走的点(前边一大堆就是为了找这些点....)
{
       vis1[v]=vis1[a[i].u]+;//将每个节点的路径长变为其父节点 路径长+1,因为权值都是1,这也是能用bfs而可以不用dijkstra的原因
q1.push(v);
}
}
}
printf("-1");//如果不能到达就输出-1
return ;//拜拜。。。。
}

[luogu2296][寻找道路]的更多相关文章

  1. $Noip2014/Luogu2296$ 寻找道路 图论

    $Luogu$ $Sol$ 首先找出符合条件一的点然后跑$SPFA$就好了叭. 如何判断点是否符合条件一呢?先连反边,记录每个点的入度,然后从终点开始$dfs$,记录每个点被到达的次数,若到达的次数等 ...

  2. 【NOIP14 D2T2】寻找道路

    Source and Judge NOIP2014 提高组 D2T2Luogu2296Caioj1567 Problem [Description] 在有向图 G 中,每条边的长度均为 1,现给定起点 ...

  3. NOIP2014 寻找道路

    2.寻找道路 (road.cpp/c/pas) [问题描述] 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所指 ...

  4. Codevs 3731 寻找道路 2014年 NOIP全国联赛提高组

    3731 寻找道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找 ...

  5. 洛谷P2296 寻找道路 [拓扑排序,最短路]

    题目传送门 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...

  6. 【DFS】【图论】NOIP2014寻找道路

    [NOIP2014]寻找道路 题目描述 Description 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所 ...

  7. 【洛谷P2296】[NOIP2014]寻找道路

    寻找道路 题目链接 这道题非常的水,按照题意, 先反向建边,从终点搜索,标记出可以到达终点的点 然后枚举一遍,判断出符合条件1的点 再从起点搜索一遍就可以了 #include<iostream& ...

  8. 洛谷P2296 寻找道路==codevs3731 寻找道路

    P2296 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...

  9. noip寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

随机推荐

  1. SQL Server 2014备份维护计划

    1.      数据库 -> [管理]-> [维护计划]  -> [新建维护计划](如果没有操作过可以,选择“维护计划向导”): 2.      直接点击下一步,然后填写计划名称.说 ...

  2. Spring框架IOC和AOP的实现原理

    IoC(Inversion of Control) (1). IoC(Inversion of Control)是指容器控制程序对象之间的关系,而不是传统实现中,由程序代码直接操控.控制权由应用代码中 ...

  3. shell中数组及其相关操作

    转载 https://blog.csdn.net/jerry_1126/article/details/52027539

  4. Delphi处理数据网格DBGrid的编辑框 获取还没有提交到数据集的字段文本

    //fromhttp://kingron.myetang.com/zsfunc12.htm (*//标题:处理数据网格的编辑框说明:示例添加焦点颜色;获取还没有提交到数据集的字段文本设计:Zswang ...

  5. vs code軟件操作

    https://www.imooc.com/article/39349 https://www.html.cn/archives/8144

  6. Lodop打印控件不打印css背景图怎么办

    background:url()这是css背景图,http协议会按异步方式下载背景图,所以很容易等不到下载完毕就开始打印了,故lodop不打印css背景图.Lodop不打印css背景图,但是有其他方法 ...

  7. Jenkins+PowerShell持续集成环境搭建(四)常用PowerShell命令

    0. 修改执行策略 Jenkins执行PowerShell脚本,需要修改其执行策略.以管理员身份运行PowerShell,执行以下脚本: Set-ExecutionPolicy Unrestricte ...

  8. 数据同步到redis中时候需要 需要给关联的表增加id 如果是一对多 则增加list存储id 如果是一个 则增加一个字段 ;目的是便于取值

  9. 源码分析: 图片加载框架Picasso源码分析

    使用: Picasso.with(this) .load("http://imgstore.cdn.sogou.com/app/a/100540002/467502.jpg") . ...

  10. Ubuntu 16.04配置Java Web开发环境

    说明:在Linux下无论是开发还是服务器配置,我个人建议都安装二进制包版本的,优点:配置清晰,容易发现问题,性能调优方便等.缺点:配置太复杂.而其余平台的建议是一键安装版本,毕竟都是用于测试的,不会实 ...