「雅礼集训 2017 Day5」珠宝
题目描述
Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右买不到。展览中总共有 N 种珠宝,每种珠宝都只有一个,对于第 i种珠宝,它的售价为 Ci 万元,对 Miranda 的吸引力为 Vi。Miranda 总共可以从银行中取出 K 万元,现在她想知道,假如她最终带了 i 万元去展览会,她能买到的珠宝对她的吸引力最大可以是多少?
题解
菜死了菜死了。。
因为普通的01背包问题是NP的,所以我们要观察题目中的一些特殊性质。
注意到C非常小,可以把C拿出来做文章。
对于每一个物品体积,我们可以有方程:dp[i]+sum[j-i]->dp[j]
对于C一样的物品,我们要选肯定是要先选价值大的,所以sum数组是一个上凸的。
我们可以对于每个C,再去枚举余数,在相同余数下进行dp。
因为有了上面的结论,那么我们的dp就有了单调性,若i转移到了x,那么(l-x)只会被(L-i)转移,(x-r)只会被(i-R)转移。
可以用分治dp做。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#define M 302
#define K 50002
#define N 1000002
using namespace std;
typedef long long ll;
ll dp[][K],g[][K];
int pre,now,pos,n,k,mx;
vector<ll>vec[M];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline ll cmp(ll x,ll y){return x>y;}
void solve(int l,int r,int L,int R,int sum){
if(L>R||l>r)return;
int mid=(L+R)>>;ll num=,point=-;
for(int i=max(mid-sum,l);i<=r&&i<mid;++i){
if(g[pre][i]+vec[pos][mid-i-]>num){
num=g[pre][i]+vec[pos][mid-i-];point=i;
}
}
if(point<)point=l;
g[now][mid]=num;
solve(l,point,L,mid-,sum);solve(point,r,mid+,R,sum);
}
int main(){
n=rd();k=rd();int x,y;
for(int i=;i<=n;++i){
x=rd();y=rd();
vec[x].push_back(y);mx=max(mx,x);
}
now=;pre=;
for(int i=;i<=mx;++i)if(vec[i].size()){
pos=i;swap(now,pre);
sort(vec[i].begin(),vec[i].end(),cmp);int x=vec[i].size();
for(int j=;j<x;++j)vec[i][j]+=vec[i][j-];
for(int j=;j<i;++j){
int p=;
for(int l=j;l<=k;l+=i,p++)g[pre][p]=dp[pre][l],g[now][p]=;p--;
solve(,p,,p,vec[i].size());
for(int l=j,p=;l<=k;l+=i,p++)dp[now][l]=max(dp[now^][l],g[now][p]);
}
}
for(int i=;i<=k;++i)printf("%lld ",dp[now][i]);
return ;
}
「雅礼集训 2017 Day5」珠宝的更多相关文章
- @loj - 6039@ 「雅礼集训 2017 Day5」珠宝
目录 @description@ @solution@ @accpeted code@ @details@ @description@ Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠 ...
- loj #6039 「雅礼集训 2017 Day5」珠宝 分组背包 决策单调性优化
LINK:珠宝 去年在某个oj上写过这道题 当时懵懂无知wa的不省人事 终于发现这个东西原来是有决策单调性的. 可以发现是一个01背包 但是过不了 冷静分析 01背包的复杂度有下界 如果过不了说明必然 ...
- [LOJ#6039].「雅礼集训 2017 Day5」珠宝[决策单调性]
题意 题目链接 分析 注意到本题的 \(C\) 很小,考虑定义一个和 \(C\) 有关的状态. 记 \(f(x,j)\) 表示考虑到了价格为 \(x\) 的物品,一共花费了 \(j\) 元的最大收益. ...
- [loj6039]「雅礼集训 2017 Day5」珠宝 dp+决策单调性+分治
https://loj.ac/problem/6039 我们设dp[i][j]表示考虑所有价值小于等于i的物品,带了j块钱的最大吸引力. 对于ci相同的物品,我们一定是从大到小选k个物品,又发现最大的 ...
- LOJ6039. 「雅礼集训 2017 Day5」珠宝【决策单调性优化DP】【分治】【思维好题】
LINK 懒得搬题面 简要题意:n个物品,每个物品有一个价格和一个吸引力,问你对于\(i \in [1,k]\),花费i的价格能得到的最大吸引力 其中价格的范围很小,在\([1,300]\)范围内 思 ...
- 「雅礼集训 2017 Day5」矩阵
填坑填坑.. 感谢wwt耐心讲解啊.. 如果要看这篇题解建议从上往下读不要跳哦.. 30pts 把$A$和$C$看成$n$个$n$维向量,那$A_i$是否加入到$C_j$中就可以用$B_{i,j}$表 ...
- LOJ#6038. 「雅礼集训 2017 Day5」远行(LCT)
题面 传送门 题解 要不是因为数组版的\(LCT\)跑得实在太慢我至于去学指针版的么--而且指针版的完全看不懂啊-- 首先有两个结论 1.与一个点距离最大的点为任意一条直径的两个端点之一 2.两棵树之 ...
- 【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT
题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$ ...
- 【刷题】LOJ 6038 「雅礼集训 2017 Day5」远行
题目描述 Miranda 生活的城市有 \(N\) 个小镇,一开始小镇间没有任何道路连接.随着经济发现,小镇之间陆续建起了一些双向的道路但是由于经济不太发达,在建设过程中,会保证对于任意两个小镇,最多 ...
随机推荐
- jQuery(九)、ajax对象操作
1 数组和对象操作 1.jQuery.extend([deep,] target, object1, [objectN]) 用一个或多个其他对象来扩展一个对象,返回被扩展的对象. 如果不指定targe ...
- SpringCloud-config分布式配置中心
为什么要统一管理微服务配置? 随着微服务不断的增多,每个微服务都有自己对应的配置文件.在研发过程中有测试环境.UAT环境.生产环境,因此每个微服务又对应至少三个不同环境的配置文件.这么多的配置文件,如 ...
- Nginx日志常用统计分析命令
IP相关统计 统计IP访问量(独立ip访问数量) awk '{print $1}' access.log | sort -n | uniq | wc -l 查看某一时间段的IP访问量(4-5点) gr ...
- Odoo:全球第一免费开源ERP库龄表的简单实现方法(无需二开)
问题背景 希望查看库龄超过30天的货物,该如何实现?此种简单数据查询需要二开吗? 解决方案 方法一:Stock Quant列表视图增加过滤器 <filter string="库龄超30 ...
- 前端开发之基础知识-HTML(二)
1.6 html链接 html链接 <a>标签可以在网页上定义一个链接地址,通过src属性定义跳转的地址,通过title属性定义鼠标悬停时弹出的提示文字框. <a href=&quo ...
- 关于 python中的 TKinterlistbox 控件加横竖滚动条
上代码 win=tkinter.Tk() scorllbar=tkinter.Scrollbar(win) scorllbar.pack(side=tkinter.RIGHT,fill=tkinter ...
- oracle sql developer 出现 : 适配器无法建立连接问题解决方案 The Network Adapter could not establish the connection
直接上图比较直观 tips one:先看看自己 控制台的 SQLplus 可以登录不 可以直接往下面走 ,如果不可以就现在服务里面找到 Oracle 开头的服务启动就好 实在不会可以百度 注:由于该步 ...
- pyspider+PhantomJS的代理设置
环境:pyspider0.3.9 PhantomJS2.1.1,均为最新版 进程用supervisor托管的. 其中需要加的几个地方: webui进程: pyspider -c config.json ...
- Linux环境下将Oracle11g数据库模式由非归档模式(Noarchivelog)修改为自动归档模式(archivelog)
1.查看Oracle当前版本 select * from v$version 如图所示: 2.切换到Oracle用户 su - oracle 如图所示: 3.进入sqlplus(此时尚未登录oracl ...
- oracle知识点总结基础篇1
最近学习了Oracle,对学习内容挑干的进行总结! 1.准备工作:学习Oracle首先就是安装环境.我装的是oracle11g. 2.安装完成之后在dos窗口中,输入 sqlplus 再输入用户名和 ...