Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

Example 1:

Input: "(()"
Output: 2
Explanation: The longest valid parentheses substring is "()"

Example 2:

Input: ")()())"
Output: 4
Explanation: The longest valid parentheses substring is "()()"

这道求最长有效括号比之前那道 Valid Parentheses 难度要大一些,这里还是借助栈来求解,需要定义个 start 变量来记录合法括号串的起始位置,遍历字符串,如果遇到左括号,则将当前下标压入栈,如果遇到右括号,如果当前栈为空,则将下一个坐标位置记录到 start,如果栈不为空,则将栈顶元素取出,此时若栈为空,则更新结果和 i - start + 1 中的较大值,否则更新结果和 i - st.top() 中的较大值,参见代码如下:

解法一:

class Solution {
public:
int longestValidParentheses(string s) {
int res = , start = , n = s.size();
stack<int> st;
for (int i = ; i < n; ++i) {
if (s[i] == '(') st.push(i);
else if (s[i] == ')') {
if (st.empty()) start = i + ;
else {
st.pop();
res = st.empty() ? max(res, i - start + ) : max(res, i - st.top());
}
}
}
return res;
}
};

还有一种利用动态规划 Dynamic Programming 的解法,可参见网友喜刷刷的博客。这里使用一个一维 dp 数组,其中 dp[i] 表示以 s[i-1] 结尾的最长有效括号长度(注意这里没有对应 s[i],是为了避免取 dp[i-1] 时越界从而让 dp 数组的长度加了1),s[i-1] 此时必须是有效括号的一部分,那么只要 dp[i] 为正数的话,说明 s[i-1] 一定是右括号,因为有效括号必须是闭合的。当括号有重合时,比如 "(())",会出现多个右括号相连,此时更新最外边的右括号的 dp[i] 时是需要前一个右括号的值 dp[i-1],因为假如 dp[i-1] 为正数,说明此位置往前 dp[i-1] 个字符组成的子串都是合法的子串,需要再看前面一个位置,假如是左括号,说明在 dp[i-1] 的基础上又增加了一个合法的括号,所以长度加上2。但此时还可能出现的情况是,前面的左括号前面还有合法括号,比如 "()(())",此时更新最后面的右括号的时候,知道第二个右括号的 dp 值是2,那么最后一个右括号的 dp 值不仅是第二个括号的 dp 值再加2,还可以连到第一个右括号的 dp 值,整个最长的有效括号长度是6。所以在更新当前右括号的 dp 值时,首先要计算出第一个右括号的位置,通过 i-3-dp[i-1] 来获得,由于这里定义的 dp[i] 对应的是字符 s[i-1],所以需要再加1,变成 j = i-2-dp[i-1],这样若当前字符 s[i-1] 是左括号,或者j小于0(说明没有对应的左括号),或者 s[j] 是右括号,此时将 dp[i] 重置为0,否则就用 dp[i-1] + 2 + dp[j] 来更新 dp[i]。这里由于进行了 padding,可能对应关系会比较晕,大家可以自行带个例子一步一步执行,应该是不难理解的,参见代码如下:

解法二:

class Solution {
public:
int longestValidParentheses(string s) {
int res = , n = s.size();
vector<int> dp(n + );
for (int i = ; i <= n; ++i) {
int j = i - - dp[i - ];
if (s[i - ] == '(' || j < || s[j] == ')') {
dp[i] = ;
} else {
dp[i] = dp[i - ] + + dp[j];
res = max(res, dp[i]);
}
}
return res;
}
};

此题还有一种不用额外空间的解法,使用了两个变量 left 和 right,分别用来记录到当前位置时左括号和右括号的出现次数,当遇到左括号时,left 自增1,右括号时 right 自增1。对于最长有效的括号的子串,一定是左括号等于右括号的情况,此时就可以更新结果 res 了,一旦右括号数量超过左括号数量了,说明当前位置不能组成合法括号子串,left 和 right 重置为0。但是对于这种情况 "(()" 时,在遍历结束时左右子括号数都不相等,此时没法更新结果 res,但其实正确答案是2,怎么处理这种情况呢?答案是再反向遍历一遍,采取类似的机制,稍有不同的是此时若 left 大于 right 了,则重置0,这样就可以 cover 所有的情况了,参见代码如下:

解法三:

class Solution {
public:
int longestValidParentheses(string s) {
int res = , left = , right = , n = s.size();
for (int i = ; i < n; ++i) {
(s[i] == '(') ? ++left : ++right;
if (left == right) res = max(res, * right);
else if (right > left) left = right = ;
}
left = right = ;
for (int i = n - ; i >= ; --i) {
(s[i] == '(') ? ++left : ++right;
if (left == right) res = max(res, * left);
else if (left > right) left = right = ;
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/32

类似题目:

Remove Invalid Parentheses

Different Ways to Add Parentheses

Generate Parentheses

Valid Parentheses

参考资料:

https://leetcode.com/problems/longest-valid-parentheses/

https://bangbingsyb.blogspot.com/2014/11/leetcode-longest-valid-parentheses.html

https://leetcode.com/problems/longest-valid-parentheses/discuss/14126/My-O(n)-solution-using-a-stack

https://leetcode.com/problems/longest-valid-parentheses/discuss/14133/My-DP-O(n)-solution-without-using-stack

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Longest Valid Parentheses 最长有效括号的更多相关文章

  1. [Leetcode] longest valid parentheses 最长的有效括号

    Given a string containing just the characters'('and')', find the length of the longest valid (well-f ...

  2. [LeetCode] 32. Longest Valid Parentheses 最长有效括号

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  3. [leetcode]32. Longest Valid Parentheses最长合法括号子串

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  4. 032 Longest Valid Parentheses 最长有效括号

    给一个只包含 '(' 和 ')' 的字符串,找出最长的有效(正确关闭)括号子串的长度.对于 "(()",最长有效括号子串为 "()" ,它的长度是 2.另一个例 ...

  5. 32. Longest Valid Parentheses最长有效括号

    参考: 1. https://leetcode.com/problems/longest-valid-parentheses/solution/ 2. https://blog.csdn.net/ac ...

  6. [LeetCode] Longest Valid Parentheses 解题思路

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  7. [LeetCode] Longest Valid Parentheses

    第一种方法,用栈实现,最容易想到,也比较容易实现,每次碰到‘)’时update max_len,由于要保存之前的‘(’的index,所以space complexity 是O(n) // 使用栈,时间 ...

  8. [LeetCode] Longest Valid Parentheses 动态规划

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  9. LeetCode: Longest Valid Parentheses 解题报告

    Longest Valid Parentheses Given a string containing just the characters '(' and ')', find the length ...

随机推荐

  1. 设置eclipse中自动添加get,set的注释为字段属性的注释

    一:说明 首先具体来看一下是什么效果,上图可能会更清楚一点 就是在get/set中自动加上属性的注释,那我们要怎么配置呢? 二:配置 2.1:下载附件 下载附件 2.2:替换class 原生的ecli ...

  2. 【WPF】ChartControl的使用

    一.前言       本月正好做一些关于工程4D,5D的界面展示,正好要用到Dev控件中的ChartControl控件,也就是图表控件. 折腾了两星期完成了一个比较能说的过去的界面吧.(领导要求高,可 ...

  3. JavaScript原型OOP——你上车了吗?

    .title-bar { width: 80%; height: 35px; padding-left: 35px; color: white; line-height: 35px; font-siz ...

  4. python 数据类型---列表使用之三

    1. 判断列表中是否存在一个元素: "in" 的使用 list = ['Frank', 99, 'is',78, 7,3,4,'smart'] print(99 in list) ...

  5. spring源码:ApplicationContext的增强功能(li)

    ApplicationContext作为资源加载器:ApplicationContext作为事件发布者: Java原生提供了事件发布机制------EventObject对象作为发布的事件,Event ...

  6. 数据库表结构设计方法及原则(li)

    数据库设计的三大范式:为了建立冗余较小.结构合理的数据库,设计数据库时必须遵循一定的规则.在关系型数据库中这种规则就称为范式.范式是符合某一种设计要求的总结.要想设计一个结构合理的关系型数据库,必须满 ...

  7. TYPESDK手游聚合SDK客户端远程开关:渠道支付黑名单

    渠道支付要做开关干嘛用呢?为什么要做这种东西呢? 这个教训来分享一下,我们的游戏上线公测了,59个渠道首发,其中包括了应用宝,UC,360等的大渠道,也包含有一些工会渠道和小渠道,上线后一切正常,但是 ...

  8. [转] 评 WOW技能天赋设计

    本文转至:http://bbs.chinaunix.net/thread-1692302-8-1.html(只作转载, 不代表本站和博主同意文中观点或证实文中信息)再比如,传说中的面向对象本该大显神威 ...

  9. Threejs中的材质贴图

    最近项目需要折腾three.js,有关three.js几点说明 1.作用 threejs适合创建简单的模型视图 2.对于复杂的模型图(如:室内模型图)需要美术3D制作,前端导成特定格式文件(如*.mt ...

  10. 大朋展翅 html5上传图片(三)一解决部分手机拍相册批量上传图片转向问题

    在经过前面的改进之后本来以为已经没有问题了,但经过我们神通广大的测试的测试,发现相册中的图片在上传时也会发生转向问题.既然前面都解决了拍照转向的问题,那么相册中图片的上传也容易解决.修改一下需要旋转图 ...