大致题意:

给你一颗树,这个树有下列特征:每个节点上有若干个苹果,且从根节点到任意叶子节点的路径长度奇偶性相同。

甲和乙玩(闲)游(得)戏(慌)。

游戏过程中,甲乙轮流将任意一个节点的若干个苹果移向它的一个叶子节点,若没有叶子节点,那么这些苹果就消失了(被吃掉了)。

若一个玩家没法操作,那么算他输。

游戏由甲开始,而乙可以先选择将两个节点上的苹果数交换一下。问乙有多少种交换方式,使得最后乙获胜。

Nim游戏:

如果懂Nim游戏的话,就不要看了\(^o^)/~你肯定会这道题了。

懂Nim游戏的定义,不懂证明的孩子们,跳过6行往下看。

这6行是写给萌新的

让懒惰的我摘录一段百度百科的话

让我们来看一下美妙绝伦的结论:

简单来说,只要把每一堆的石子数全部xor起来,最后得到0,则后手有必胜策略,否则先手有必胜策略。

Nim游戏结论证明:

不想看证明,想看本题做法的,跳过13行往下看。

让我来描述一下,假如xor起来是0的话,后手的必胜策略。

我们先设每一堆石头数全部xor起来,得到的结果是p。

一开始p=0。

假如先手选中一堆石头,这一堆石头数为x,他拿走了一些石头,剩余石头数为y。

那么我们记 t=x^y。

容易知道,t≠0,先手操作之后,p=t≠0。

于是,容易知道,后手一定能找到一堆石头(石头数为a),满足a^t<a,

因为一定能找到一个a,它与t的二进制最高位都为1。(这点都理解不了就放弃OI吧……好吧开个玩笑)

那么,后手将a变为a^t之后,p重新变为0。

于是,先手操作之后,p永远不为0,后手操作之后,p永远都是0。而游戏并不是永无止境的,所以一定是后手赢。

那么,假设一开始p≠0,先手策略是什么呢?

显而易见,就是找一堆石头(石头数为a),满足a^p<a,

先手将a变成a^p,使得p变为0。接着跟后手策略一样做即可。

本题做法:

也许当该游戏的玩家Sagheer and Soliman知道互相都使用必胜策略的话,他们也就不会喜欢玩这个游戏了。

因为,一开始游戏的局面决定了,谁能赢

let me see——

题目中有一个非常好的条件

于是本题就从非常难变成了非常简单。

设,d[x]表示x到该子树中某一个叶子节点的路径长度的奇偶性。(0表示偶数,1表示奇数)

假如后手一开始不能交换节点,那么后手策略可以是这样:

假设d值为1的点属于集合1,d值为0的点属于集合0。

①:先手将集合1中的点x的y个苹果往下移到了z,

那么我们知道d[z]=0,则后手可以将z的y个苹果往下移

②假如把集合0中的点列出来,那么这就是一个典型的Nim游戏。

只要这些点上的苹数xor起来的值p=0,后手就能赢。

回到原题:后手一开始有机会交换两个节点。

假设p=0,后手可以交换集合0中的任意两个点,或集合1中的任意两个点。

否则,肯定要将集合0中的一个点与集合1中的一个点交换了。

弄一个桶,枚举ok。

代码:

 #include <cstdio>
#include <iostream>
using namespace std;
#define ref(i,x,y)for(int i=x;i<=y;++i)
int read(){
char c=getchar();int d=,f=;
for(;c<''||c>'';c=getchar())if(c=='-')f=-;
for(;c>=''&&c<='';d=d*+c-,c=getchar());
return d*f;
}
const int N=,M=;
int n,cnt,t[M],d[N],a[N],head[N],to[N],nxt[N];
void addedge(int x,int y){
++cnt;to[cnt]=y;nxt[cnt]=head[x];head[x]=cnt;
}
void dfs(int x){
for(int i=head[x];i;i=nxt[i]){
dfs(to[i]);
d[x]=d[to[i]]^;
}
}
int main()
{
n=read();
ref(i,,n)a[i]=read();
ref(i,,n)addedge(read(),i);
dfs();
int tmp=,tot=;
long long ans=;
ref(i,,n)if(!d[i])tmp^=a[i];
ref(i,,n)if(d[i])t[a[i]]++,tot++;
if(tmp==)ans=1LL*tot*(tot-)/+1LL*(n-tot)*(n-tot-)/;
ref(i,,n)if(!d[i])ans+=t[tmp^a[i]];
printf("%lld\n",ans);
}

Codeforces 812E Sagheer and Apple Tree的更多相关文章

  1. codeforces 812E Sagheer and Apple Tree(思维、nim博弈)

    codeforces 812E Sagheer and Apple Tree 题意 一棵带点权有根树,保证所有叶子节点到根的距离同奇偶. 每次可以选择一个点,把它的点权删除x,它的某个儿子的点权增加x ...

  2. CodeForces 812E Sagheer and Apple Tree 树上nim

    Sagheer and Apple Tree 题解: 先分析一下, 如果只看叶子层的话. 那么就相当于 经典的石子问题 nim 博弈了. 那我们看非叶子层. 看叶子层的父亲层. 我们可以发现, 如果从 ...

  3. Codeforces 812E Sagheer and Apple Tree ——(阶梯博弈)

    之前在bc上做过一道类似的阶梯博弈的题目,那题是移动到根,这题是移动到叶子.换汤不换药,只要和终态不同奇偶的那些位置做nim即可.因此这题给出了一个条件:所有叶子深度的奇偶性相同.同时需要注意的是,上 ...

  4. codeforces 812 E. Sagheer and Apple Tree(树+尼姆博弈)

    题目链接:http://codeforces.com/contest/812/problem/E 题意:有一颗苹果树,这个苹果树所有叶子节点的深度要不全是奇数,要不全是偶数,并且包括根在内的所有节点上 ...

  5. Codeforces 348B - Apple Tree

    348B - Apple Tree 我们设最后答案为 x , 我们我们就能用x表示出所有节点下面的苹果个数, 然后用叶子节点求lcm, 取最大的可行解. #include<bits/stdc++ ...

  6. cf202-div 1-B - Apple Tree:搜索,数论,树的遍历

      http://codeforces.com/contest/348/problem/B   B. Apple Tree time limit per test 2 seconds memory l ...

  7. POJ 2486 Apple Tree

    好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...

  8. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

  9. poj 3321 Apple Tree dfs序+线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K       Description There is an apple tree outsid ...

随机推荐

  1. C语言第三次作业总结

    本次作业的亮点 总体情况 大部分同学基本掌握了单层循环结构的写法,懂得了代码调试的过程 PTA通过率及作业质量都不错,希望再接再厉 推荐博客 黄毓颖 推荐理由:代码思路清晰,格式良好:调试过程相当形象 ...

  2. 网络1712--c语言一二维数组作业总结

    1.成绩摆前头 1.1基本要求(1分) 按时交 - 有分 未交 - 0分 迟交一周以上 - 倒扣本次作业分数 抄袭 - 0分 泛泛而谈(最多七分) 1.2评分要点 PTA作业总结(4分) 同学代码互评 ...

  3. C语言第二次博客作业—分支结构

    一.PTA实验作业 题目1:计算分段函数 1.实验代码 double x,y; scanf("%lf",&x); if(x>=0){ y=sqrt(x); print ...

  4. NO.7 项目需求分析

    NO.7 项目需求分析 由于我们组的第一次选题并没有通过,所以我们又重新选择了一个题目--高校学生征信系统. 结合老师的作业要求,我们对该项目进行了详细的需求分析,软件需求规格说明书地址请点击这里.软 ...

  5. python3.* socket例子

    On Server: # -*- coding: utf-8 -*-#this is the server import socketif "__main__" == __name ...

  6. Beta冲刺Day3

    项目进展 李明皇 今天解决的进度 完善了程序的运行逻辑(消息提示框等) 明天安排 前后端联动调试 林翔 今天解决的进度 向微信官方申请登录验证session以维护登录态 明天安排 继续完成维护登录态 ...

  7. 服务器数据恢复_服务器xfs数据丢失数据恢复

    简介:太原一家公司的服务器出现故障,服务器是linux服务器,连接了一台某型号的存储,文件系统为xfs文件系统.管理员使用xfs_repair工具试图对文件系统进行修复但修复失败,linux服务器中所 ...

  8. Raid 5数据恢复原理以及raid 5数据恢复实际操作案例

    Raid 5数据恢复算法原理 要理解 raid 5数据恢复原理首先要先认识raid5,"分布式奇偶校验的独立磁盘结构"也就是我们称之为的raid 5数据恢复有一个概念需要理解,也就 ...

  9. react中的DOM操作

    前面的话 某些情况下需要在典型数据流外强制修改子代.要修改的子代可以是 React 组件实例,也可以是 DOM 元素.这时就要用到refs来操作DOM 使用场景 下面是几个适合使用 refs 的情况 ...

  10. JAVA_SE基础——23.类的定义

    黑马程序员入学blog ... java 面向对象的语言 对象:真实存在的唯一的实物. 比如:我家的狗, 类: 实际就是对某种类型事物的共性属性与行为的抽取.  抽象的概念...   比如说:车   ...