The Fortified Forest
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6198   Accepted: 1744

Description

Once upon a time, in a faraway land, there lived a king. This king owned a small collection of rare and valuable trees, which had been gathered by his ancestors on their travels. To protect his trees from thieves, the king ordered that a high fence be built around them. His wizard was put in charge of the operation. 
Alas, the wizard quickly noticed that the only suitable material available to build the fence was the wood from the trees themselves. In other words, it was necessary to cut down some trees in order to build a fence around the remaining trees. Of course, to prevent his head from being chopped off, the wizard wanted to minimize the value of the trees that had to be cut. The wizard went to his tower and stayed there until he had found the best possible solution to the problem. The fence was then built and everyone lived happily ever after.

You are to write a program that solves the problem the wizard faced.

Input

The input contains several test cases, each of which describes a hypothetical forest. Each test case begins with a line containing a single integer n, 2 <= n <= 15, the number of trees in the forest. The trees are identified by consecutive integers 1 to n. Each of the subsequent n lines contains 4 integers xi, yi, vi, li that describe a single tree. (xi, yi) is the position of the tree in the plane, vi is its value, and li is the length of fence that can be built using the wood of the tree. vi and li are between 0 and 10,000. 
The input ends with an empty test case (n = 0). 

Output

For each test case, compute a subset of the trees such that, using the wood from that subset, the remaining trees can be enclosed in a single fence. Find the subset with minimum value. If more than one such minimum-value subset exists, choose one with the smallest number of trees. For simplicity, regard the trees as having zero diameter. 
Display, as shown below, the test case numbers (1, 2, ...), the identity of each tree to be cut, and the length of the excess fencing (accurate to two fractional digits).

Display a blank line between test cases.

Sample Input

6
0 0 8 3
1 4 3 2
2 1 7 1
4 1 2 3
3 5 4 6
2 3 9 8
3
3 0 10 2
5 5 20 25
7 -3 30 32
0

Sample Output

Forest 1
Cut these trees: 2 4 5
Extra wood: 3.16 Forest 2
Cut these trees: 2
Extra wood: 15.00
/*
poj 1873 凸包+枚举 给你n棵树,已知树的树的长度以及他们的价值。要砍掉一些树来给剩下的数围一个篱笆
要求剩下的数价值尽可能大,如果价值相同则希望剩下的树尽可能多 因为最多15棵,枚举需要砍掉的树,然后通过凸包判断是否能围成,记录一下即可 hhh-2016-05-07 21:27:41
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 20;
double PI = 3.1415926;
double eps = 1e-8; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
pair<int,Point> operator &(const Line&b)const
{
Point res = s;
if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断
{
if( sgn((s-b.t) ^ (b.s-b.t)) == 0)
return make_pair(0,res);
else
return make_pair(1,res);
}
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return make_pair(2,res);
}
};
Point lis[maxn];
int Stack[maxn],top; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
Point ta[20];
bool cmp(Point a,Point b)
{
double t = (a-ta[0])^(b-ta[0]);
if(sgn(t) == 0)
{
return dist(a,ta[0]) <= dist(b,ta[0]);
}
if(sgn(t) < 0)
return false;
else
return true;
} int tot;
double Graham(int n)
{
Point p;
if(n == 1 || n == 0)
{
return 0;
}
if(n == 2)
{
return dist(ta[0],ta[1])*2;
}
int k = 0;
p = ta[0];
for(int i = 1; i < n; i++)
{
if(p.y > ta[i].y || (p.y == ta[i].y && p.x > ta[i].x))
p = ta[i],k = i;
}
swap(ta[0],ta[k]);
sort(ta+1,ta+n,cmp);
Stack[0] = 0;
Stack[1] = 1;
top = 2;
for(int i = 2; i < n; i++)
{
while(top > 1 && sgn((ta[Stack[top-1]]-ta[Stack[top-2]])
^ (ta[i]-ta[Stack[top-2]])) <= 0)
top --;
Stack[top++] = i;
}
double len = 0;
for(int i = 0; i < top; i++)
{
if(i == top - 1)
len += dist(ta[Stack[i]],ta[Stack[0]]);
else
len += dist(ta[Stack[i]],ta[Stack[i+1]]);
}
return len;
} int val[maxn];
double lent[maxn]; int main()
{
//freopen("in.txt","r",stdin);
int n;
int cas = 1;
while(scanf("%d",&n) && n)
{
if(cas != 1)
printf("\n");
for(int i = 0; i < n; i++)
{
scanf("%lf%lf%d%lf",&lis[i].x,&lis[i].y,&val[i],&lent[i]);
}
int ansV = 0x7fffffff,ansN = 0x7fffffff,ansX = 0;
double ansL = 0;
for(int i = 0; i < (1<<n); i++)
{
tot = 0;
double lans = 0;
int vans = 0;
for(int j = 0; j < n; j++)
{
if(i & (1 << j))
{
vans += val[j];
lans += lent[j];
}
else
{
ta[tot++] = lis[j];
}
}
if(vans > ansV)
continue;
double t = Graham(tot);
if(lans >= t)
{
if(vans < ansV || (n-tot < ansN && vans == ansV))
{
ansV = vans;
ansL = lans-t;
ansX = i;
ansN = n-tot;
}
}
}
printf("Forest %d\n",cas++);
printf("Cut these trees:");
for(int i = 0; i < n; i++)
{
if(ansX&(1 << i))
printf(" %d",i+1);
}
printf("\n");
printf("Extra wood: %.2f\n",ansL);
}
return 0;
}

  

poj 1873 凸包+枚举的更多相关文章

  1. poj 1873(枚举所有的状态+凸包)

    The Fortified Forest Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6115   Accepted: 1 ...

  2. The Fortified Forest - POJ 1873(状态枚举+求凸包周长)

    题目大意:有个国王他有一片森林,现在他想从这个森林里面砍伐一些树木做成篱笆把剩下的树木围起来,已知每个树都有不同的价值还有高度,求出来砍掉那些树可以做成篱笆把剩余的树都围起来,要使砍伐的树木的价值最小 ...

  3. ●POJ 1873 The Fortified Forest

    题链: http://poj.org/problem?id=1873 题解: 计算几何,凸包 枚举被砍的树的集合.求出剩下点的凸包.然后判断即可. 代码: #include<cmath> ...

  4. poj1873 The Fortified Forest 凸包+枚举 水题

    /* poj1873 The Fortified Forest 凸包+枚举 水题 用小树林的木头给小树林围一个围墙 每棵树都有价值 求消耗价值最低的做法,输出被砍伐的树的编号和剩余的木料 若砍伐价值相 ...

  5. poj 1113 凸包周长

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33888   Accepted: 11544 Descriptio ...

  6. Poj 2187 凸包模板求解

    Poj 2187 凸包模板求解 传送门 由于整个点数是50000,而求凸包后的点也不会很多,因此直接套凸包之后两重循环即可求解 #include <queue> #include < ...

  7. 简单几何(凸包+枚举) POJ 1873 The Fortified Forest

    题目传送门 题意:砍掉一些树,用它们做成篱笆把剩余的树围起来,问最小价值 分析:数据量不大,考虑状态压缩暴力枚举,求凸包以及计算凸包长度.虽说是水题,毕竟是final,自己状压的最大情况写错了,而且忘 ...

  8. POJ 1873 The Fortified Forest [凸包 枚举]

    The Fortified Forest Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6400   Accepted: 1 ...

  9. POJ 1873 The Fortified Forest(枚举+凸包)

    Description Once upon a time, in a faraway land, there lived a king. This king owned a small collect ...

随机推荐

  1. Alpha冲刺Day4

    Alpha冲刺Day4 一:站立式会议 今日安排: 我们把项目大体分为四个模块:数据管理员.企业人员.第三方机构.政府人员.完成了数据库管理员模块.因企业人员与第三方人员模块存在大量的一致性,故我们团 ...

  2. class AClass<E extends Comparable>与class AClass<E extends Comaprable<E>>有什么区别?

    new ArrayList<>()与new ArrayList()一样 都是为了做限定用的 如果不了解你可以看API 这个Comparable里面有一个方法compareTo(T o) 如 ...

  3. servlet线程同步问题-代码实现同步(转)

    从servlet的生命周期中,我们知道,当第一次访问某个servlet后,该servlet的实例就会常驻 内存,以后再次访问该servlet就会访问同一个servlet实例,这样就带来多个用户去访问一 ...

  4. UVA 10622 Perfect P-th Powers

    https://vjudge.net/problem/UVA-10622 将n分解质因数,指数的gcd就是答案 如果n是负数,将答案除2至奇数 原理:(a*b)^p=a^p*b^p #include& ...

  5. [知识梳理]课本3&9.1

    函数:关键词:参数.返回值.函数返回类型.函数体. 函数按照返回类型,可以分为有参函数和无参函数. 函数根据是否有返回值,可以分为返回值函数和非返回值函数.     函数的定义:函数的定义可以放在任意 ...

  6. js 获取 最近七天 30天 昨天的方法 -- 转

    自己用到了 找了下  先附上原作的链接  http://www.cnblogs.com/songdongdong/p/7251254.html 原谅我窃取你的果实  谢谢你谢谢你 ~ 先附上我自己用到 ...

  7. wamp的mysql设置用户名和密码

    wamp下修改mysql root用户的登录密码 感谢作者:http://www.3lian.com/edu/2014/02-25/131010.html               1.安装好wam ...

  8. [UWP]针对UWP程序多语言支持的总结,含RTL

    UWP 对 Globalization and localization 的支持非常好,可以非常容易地实现应用程序本地化. 所谓本地化,表现最为直观的就是UI上文字和布局方式了,针对文字,提供不同的语 ...

  9. hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装

    hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装 一.依赖文件安装 1.1 JDK 参见博文:http://www.cnblogs.com/liugh ...

  10. Spring 环境与profile(三)——利用maven的resources、filter和profile实现不同环境使用不同配置文件

    基本概念 profiles定义了各个环境的变量id filters中定义了变量配置文件的地址,其中地址中的环境变量就是上面profile中定义的值 resources中是定义哪些目录下的文件会被配置文 ...