hdu4542 && ZOJ2562(反素数)
反素数:
对于任何正整数,其约数个数记为,例如,如果某个正整数满足:对任意的正整
数,都有,那么称为反素数。
有两个特点:
1.一个反素数的质因子必是从2开始的质数
2.如果,那么必有
最常见的问题如下:
(1)给定一个数,求一个最小的正整数,使得的约数个数为
(2)求出中约数个数最多的这个数
即是通过搜索建立一个搜索树,递归出合适的所有的情况,再加上剪枝。
ZOJ2562
题意:
给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <time.h>
#define N 10100
typedef long long ll;
using namespace std;
ll maxs,allnum;
ll n;
int prim[16] = {1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}; void dfs(ll num,ll k,ll sum,ll limit)
{
if(sum > maxs)
{
maxs = sum;
allnum = num;
} if(sum == maxs && allnum > num )
allnum = num;
ll temp = num;
if(k > 15)
return ;
for(int i= 1;i <= limit;i++)
{
if(temp*prim[k] > n)
break;
dfs(temp*= prim[k],k+1,sum*(i+1),i);
}
} int main()
{
while(cin>>n)
{
maxs = 0;
allnum = n;
dfs(1,1,1,50);
cout<<allnum<<endl;
}
return 0;
}</span>
hdu 4542
题意:
给出一个数K,和两个操作,
如果操作是0,就求出一个最小的正整数X,满足X的约数个数为K,
如果操作是1,就求出一个最小的X,满足X的约数个数为X-K。
d来先处理成与i互质的个数。由于d[i] < i,将其处理成d[i]=x,表示有x 个非约数的为i
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <time.h>
#define N 10100
typedef long long ll;
using namespace std;
ll INF = ((ll)1<<62)+1;
int d[50005];
ll maxs,allnum;
ll n,type;
int prim[16] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53}; void ini()
{
for(int i = 1; i <= 50005; i++) d[i] = i;
for(int i = 1; i <= 50005; i++)
{
for(int j = i; j <= 50005; j+=i) d[j]--; //滚动数组的形式
if(!d[d[i]]) d[d[i]] = i;
d[i] = 0;
}
}
//如果d[k]=0,表示小于i的所有数中,没有刚好有k个互质数的数
//故将d[k]=i,表示刚好有k个与i互质的数个数最小为i
//d[i] = 0标记刚好有k个互质数的数没有 void dfs(ll sum,ll k,ll num,ll limit)
{
if(num > n) return ;
if(sum < maxs && num == n) maxs = sum;
ll temp = sum;
for(int i= 1; i <= limit; i++)
{
if(num*(i+1) > n || maxs/prim[k] < temp) break; //大于n或者结果大于maxs,不需再考虑
temp *= prim[k];
if(n % (num*(i+1)) == 0)
dfs(temp,k+1,num*(i+1),i);
}
} int main()
{
int T;
int tt = 1;
ini();
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d",&type,&n);
if(type)
maxs = d[n];
else
{
maxs = INF;
dfs(1,0,1,100); //最初这100是50,,一直错,估计是太小
}
printf("Case %d: ",tt++);
if(maxs == 0)
puts("Illegal");
else if(maxs >= INF)
puts("INF");
else
printf("%I64d\n",maxs);
}
return 0;
}
hdu4542 && ZOJ2562(反素数)的更多相关文章
- zoj2562 反素数
/* 这题1 <= n <= 1016,暴力肯定是TLM,所以看了大牛求解小于N的反素数的算法,思路大致是这样的: 性质1:一个反素数的质因子一定是从2开始的若干个连续质数. 因此可以枚举 ...
- ZOJ- 2562 反素数使用
借用了下东北师大ACM的反素数模版. 本来我是在刷线段树的,有一题碰到了反素数,所以学了一下..有反素数的存在,使得一个x ,使得x的约数个数,在1 到 x的所有数里面,是最大的. 这里面还涉及安叔那 ...
- 【zoj2562】反素数
题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最小的一个.(1 <= n <= 10^16) 题目:http://acm.hust.edu. ...
- ZOJ-2562 More Divisors 反素数
题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个. 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4 ...
- zoj2562:搜索+数论(反素数)
题目大意:求n以内因子数量最多的数 n的范围为1e16 其实相当于求n以内最大的反素数... 由素数中的 算数基本原理 设d(a)为a的正因子的个数,则 d(n)=(a1+1)(a2+1)..... ...
- poj 2886 线段树的更新+反素数
Who Gets the Most Candies? Time Limit: 5000 MS Memory Limit: 0 KB 64-bit integer IO format: %I64d , ...
- 【POJ2886】Who Gets the Most Candies?-线段树+反素数
Time Limit: 5000MS Memory Limit: 131072K Case Time Limit: 2000MS Description N children are sitting ...
- Prime & 反素数plus
题意: 求因数个数为n的最小正整数k. n<=10^9输出其唯一分解形式 SOL: 模拟题,一眼看过去有点惊讶...这不是我刚看过的反素数吗... 咦数据怎么这么大,恩搞个高精吧... 于是T了 ...
- BZOJ 1053 & 反素数
题意: 反素数,膜一篇GOD's Blog...http://blog.csdn.net/ACdreamers/article/details/25049767 此文一出,无与争锋... CODE: ...
随机推荐
- iOS开发-添加圆角效果高效实现
圆角(RounderCorner)是一种很常见的视图效果,相比于直角,它更加柔和优美,易于接受.但很多人并不清楚如何设置圆角的正确方式和原理.设置圆角会带来一定的性能损耗,如何提高性能是另一个需要重点 ...
- 【iOS】Swift类的继承、构造方法、析构器等复习
一.继承与重写, 防止重写 1.1 基类, 不继承任何类. Swift不想OC或者Java中继承自Object类.定义一个类,不继承任何类,该类就是基类. [java] view plaincopy ...
- 如何书写高效的css样式
如何书写高效的css样式? 有以下四个关键要素: 1.高效的css 2.可维护的css 3.组件化的css 4.hack-free css 书写高效的css: 1.使用外联样式替代行间样式或内嵌样式 ...
- 深入理解PHP之require/include顺序
深入理解PHP之require/include顺序 作者: Laruence( ) 本文地址: http://www.laruence.com/2010/05/04/1450.html 转载请注明 ...
- LeetCode & Q66-Plus One-Easy
Array Description: Given a non-negative integer represented as a non-empty array of digits, plus one ...
- build.gradle & gradle.properties
一.build.gradle buildscript { ext { springBootVersion = '1.5.9.RELEASE' } repositories { maven { cred ...
- [机器学习Lesson3] 梯度下降算法
1. Gradient Descent(梯度下降) 梯度下降算法是很常用的算法,可以将代价函数J最小化.它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域. 1.1 线性回归问题应用 我们 ...
- leetcode算法: Find All Duplicates in an Array
Given an array of integers, 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and others ...
- Django 相关
Web框架本质 其实所有的Web应用本质就是一个socket服务端,而用户的浏览器就是一个socket客户端.简单的socket代码如下: import socket sk = socket.sock ...
- Django REST framework+Vue 打造生鲜超市(四)
五.商品列表页 5.1.django的view实现商品列表页 (1)goods/view_base.py 在goods文件夹下面新建view_base.py,为了区分django和django res ...