题链:

http://poj.org/problem?id=2284

题解:

计算几何,平面图的欧拉定理

欧拉定理:设平面图的定点数为v,边数为e,面数为f,则有 v+f-e=2

即 f=e-v+2

所以$N^2$求出所以线段的交点,并去重,

然后再计算出最后共有多少边,(判断点是否在线段上,是的话则e++)

总的复杂度 $O(N^3)$

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 350
using namespace std;
const double eps=1e-8;
struct Point{
double x,y;
Point(double _x=0,double _y=0):x(_x),y(_y){}
};
typedef Point Vector;
int sign(double x){
if(-eps<=x&&x<=eps) return 0;
return x<0?-1:1;
}
bool operator < (const Point &A,const Point &B){return sign(A.x-B.x)<0||(sign(A.x-B.x)==0&&sign(A.y-B.y)<0);}
bool operator == (const Point &A,const Point &B){return sign(A.x-B.x)==0&&sign(A.y-B.y)==0;}
Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);}
double operator ^ (Vector A,Vector B){return A.x*B.y-A.y*B.x;}
double operator * (Vector A,Vector B){return A.x*B.x+A.y*B.y;}
Point D[MAXN],V[MAXN*MAXN];
int N;
bool SPI(Point a1,Point a2,Point b1,Point b2){//Segment_Proper_Intersection
static double c1,c2,c3,c4;
c1=(a2-a1)^(b1-a1); c2=(a2-a1)^(b2-a1);
c3=(b2-b1)^(a1-b1); c4=(b2-b1)^(a2-b1);
return sign(c1*c2)<0&&sign(c3*c4)<0;
}
bool OS(Point P,Point a1,Point a2){//On_Segment
return sign((P-a1)^(P-a2))==0&&sign((P-a1)*(P-a2))<0;
}
Point GLI(Point P,Vector v,Point Q,Vector w){//Get_Line_Intersection
static Vector u; u=P-Q;
return P+v*((w^u)/(v^w));
}
int main(){
int Case=0,v,e;
while(scanf("%d",&N)&&N){
for(int i=1;i<=N;i++)
scanf("%lf%lf",&D[i].x,&D[i].y),V[i]=D[i];
N--; v=N; e=N;
for(int i=1;i<=N;i++)
for(int j=1;j<i;j++)
if(SPI(D[j],D[j+1],D[i],D[i+1]))
V[++v]=GLI(D[j],D[j+1]-D[j],D[i],D[i+1]-D[i]);
sort(V+1,V+v+1);
v=unique(V+1,V+v+1)-V-1;
for(int i=1;i<=v;i++)
for(int j=1;j<=N;j++)
if(OS(V[i],D[j],D[j+1])) e++;
printf("Case %d: There are %d pieces.\n",++Case,e-v+2);
}
return 0;
}

  

●POJ 2284 That Nice Euler Circuit的更多相关文章

  1. poj 2284 That Nice Euler Circuit 解题报告

    That Nice Euler Circuit Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 1975   Accepted ...

  2. POJ 2284 That Nice Euler Circuit (LA 3263 HDU 1665)

    http://poj.org/problem?id=2284 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&a ...

  3. pku 2284 That Nice Euler Circuit

    题意: 给你n个点第n个点保证与第0个点相交,然后求这n个点组成的图形可以把整个平面分成几个面 思路: 这里的解题关键是知道关于多面体的欧拉定理 多面体: 设v为顶点数,e为棱数,f是面数,则v-e+ ...

  4. poj2284 That Nice Euler Circuit(欧拉公式)

    题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...

  5. POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)

                                                          That Nice Euler Circuit Time Limit: 3000MS   M ...

  6. UVa 10735 (混合图的欧拉回路) Euler Circuit

    题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...

  7. UVA 10735 Euler Circuit 混合图的欧拉回路(最大流,fluery算法)

    题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制 ...

  8. UVA-10735 - Euler Circuit(混合欧拉回路输出)

    题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度 ...

  9. Uva 1342 - That Nice Euler Circuit

    Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his ...

随机推荐

  1. 手把手教你 LabVIEW 串口仪器控制——VISA 驱动下载安装篇

           仪器控制,核心在于 VISA 函数..有些仪器可能不需要 VISA,有自己的 DLL 什么的,我就管不着.        正常情况下,大家安装的 LabVIEW,都是不带 VISA 驱动 ...

  2. 03-移动端开发教程-CSS3新特性(下)

    1. CSS3动画 1.1 过渡的缺点 transition的优点在于简单易用,但是它有几个很大的局限. transition需要事件触发,所以没法在网页加载时自动发生. transition是一次性 ...

  3. 剑指offer-数据流中的中位数

    题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值.   ...

  4. 剑指offer-两个链表的第一个公共节点

    题目描述 输入两个链表,找出它们的第一个公共结点. 解题思路 分析可得如果两个链表有公共节点,那么公共节点出现在两个链表的尾部,即从某一节点开始,两链表之后的节点全部相等.可以首先遍历两个链表得出各自 ...

  5. redis入门(15)redis的数据备份和恢复

    redis入门(15)redis的数据备份和恢复

  6. Linux之Shell命令

    开始接触Linux命令行,学习Linux文件系统导航以及创建.删除.处理文件所需的命令.  注:文末有福利! 几个快捷键: Linux发行版通常使用Ctrl+Alt组合键配合F1~F7进入要使用的控制 ...

  7. Python学习之list有序集合

    # coding=utf-8 # list有序集合 classmate = ['Michael', 'Bob', 'Tracy'] print classmate print len(classmat ...

  8. tr069开源代码——cwmp移植

    原创作品,转载请注明出处,严禁非法转载.如有错误,请留言! email:40879506@qq.com 声明:本系列涉及的开源程序代码学习和研究,严禁用于商业目的. 如有任何问题,欢迎和我交流.(企鹅 ...

  9. Java基础——字符串String

    String类 1. String类位于java.lang包中,使用时无需导包. 2. 创建字符串的两种方式: ① 直接指定(字面量声明):String str = "abc"; ...

  10. 你真的会websocket吗

    Websocket WebSocket协议是基于TCP的一种新的网络协议.它实现了浏览器与服务器全双工(full-duplex)通信——允许服务器主动发送信息给客户端. WebSocket通信协议于2 ...