在单机的数据库系统之中,我们很容易实现一套满足ACID 特性的 事务处理系统, 事务的一致性不存在问题。 但是在分布式系统之中,由于数据分布在不同的主机结点上,如何对着些数据进行分布式的事务处理就具有非常大的挑战,CAP 理论的出现,让我们对于分布式事务的一致性有了另外一种看法。

什么是CAP 理论?

在计算机科学理论,CAP 理论 (也称Brewer 定理) 又有称为 CAP原则,CAP定理,是由计算机科学家Eric Brewer 在 2000 年 提出的 ,其理论观点是, 在分布式计算机系统中,不可能存在同时提供 以下全部三个保证。

  • Consistency(一致性): 所有节点同一时间看到的是相同的数据。在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
  •  Availability(可用性):不管是否成功,确保每一个请求都能接收到响应。在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)
  • Partition tolerance(分区容错性):系统任意分区后,在网络故障时,仍能操作。以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。

   CAP原则是NOSQL数据库和分布式系统的基石。

为什么说CAP 只能三选二?

举个栗子:

下图 显示了在一个网络中,N1,N2 是两个节点,他们共享数据块V  其中一个 值V0, 运行在N1 的A 程序可以认为是安全的,无Bug,可预测的和可靠的,运行在N2 的是B 程序,在这个例子中,A 将写入V的新值。而B从V 中读取值。

系统预期执行下面的操作:

  1. 写入一个V 的新值 V1 。
  2. 然后消息(M) 从N1 更新V 的副本到N2.
  3. 从B 处读取返回的V1

如果网络是分区的,当N1到N2 的消息不能传递的时候,就会出现虽然N2 能访问到V 的值(可用性),但是实际上与N1 的V 值已经不一致了。  如下图:

CAP 常见模型:

既然 CAP 理论已经证明一致性,可用性和分区容错性三者不可能通知达成。 那么在实际应用中,我们可在其他某一方面来放松条件,从而达到妥协,下面是一些常用的模型。

  1. 牺牲分区 (CA  模型)

牺牲分区容错性意味着把所有机器搬到一台机器内部,或者放到一个“要死一起上死”的机架上面(机架也可能出现部分失效),这明显就违背了我们希望的可伸缩性。

常见例子:

  • 单站点数据库
  • 集群数据库
  • LDAP
  • xFS 文件系统

实现方式:

两阶段提交, 缓存验证协议。

2. 牺牲可用性(CP 模型)

牺牲可用性意味着一旦系统出现分区这样的错误, 系统就直接停止服务。

常见例子:

  • 分布式数据库
  • 分布式锁定
  • 绝大部分协议

实现方式:

悲观锁, 少数分区不可用。

3 . 牺牲一致性(AP 模型)

常见例子:

  • Coda
  • Web缓存
  • DNS

实现方式:

到期/租赁, 解决冲突, 乐观。

CAP 的意义:

在系统架构时,应该是根据具体的业务场景来权衡CAP, 比如 对于大多数互联网应用来说(如门户网站),因为 机器数量庞大,部署结点分散,网络故障是常态的,所以可用性是必须的所以只有舍弃一致性来保证服务的AP 而对于银行等需要确保一致性的场景,通常会权衡CA, 和CP 模型。

CAP 的最新发展:

Eric Brewer 在2012 年发表文章指出了CAP里面三选二的做法存在一定的误差性,主要体现在:

  • 由于分区很少发生,那么在系统中不存在分区的情况下,没有什么理由牺牲C或A 。
  • C与A 之间的取舍可以在同一系统内以非常细小的粒度反复发生,而每一次的决策可能因为具体的操作,乃至因为牵涉特定的数据或用户而有所不同。
  • 这三种性质都可以在一定程度上衡量,并不是非黑即白的有或无。可用性显然是在0% 到100% 之间连续变化的,一致性分很多级别,连分区也可以细分不同的含义,如系统内的不同部分对于是否存在分区可以有不一样的认知。

理解CAP 理论最简单的方式 是想象两个节点分处于分区两侧,允许至少一个节点更新状态会导致数据不一致,即丧失了C 性质,如果为了保证数据的一致性,将分区一侧的节点设置为不可用, 那就丧失了A 性质,除非两个节点可以相互通讯,才能既保证A 又保证C ,但这又会丧失P 性质,一般来说 跨区域的系统,设计师无法舍弃P 性质,那么就只能在数据一致性和可用性上做一个艰难选择, 不确切的说,NoSQL 运动的主题其实是创造各种可用性优先,数据一致性其次的方案,而传统数据库坚守ACID 特性,做的是相反的事情。

BASE :

BASE 来自于互联网的电子商务领域的实践,它是基于CAP 理论逐步演化而来的,核心思想是即便不能达到强一致性,但可以根据应用特点采用适当的方式来达到最终一致性的效果。BASE 是对CAP 中C和A 的延伸。 其含义如下 :

  1. Basically Available  基本可用
  2. Soft state 软状态/柔性事务,即状态可以有一段时间的不同步。
  3. Eventual consistency  最终一致性。

分布式系统CAP理论的更多相关文章

  1. 分布式系统CAP理论与CA选择

    总结: CAP指的是数据一致性.服务可用性.分区容错性:(这里的一致性指的是强一致性,又叫原子性或线性一致性:可用性指的是所有读写操作都要能终止,没有时延上的要求) 分布式系统中P是必选项:在P必选的 ...

  2. 分布式系统CAP理论以及注册中心选择

    CAP定理:指的是在一个分布式系统中,Consistency(一致性). Availability(可用性).Partition tolerance(分区容错性),三者不可同时获得. 一致性(C-数据 ...

  3. 分布式零基础之--分布式CAP理论

    研究到分布式系统CAP理论,记录下来下回详细分析它: CAP是指三个单词的简称 C: 一致性(Consistence) 所有节点访问的都是同一份最新的数据副本. A: 可用性(Availability ...

  4. 转载:分布式系统的CAP理论

    原文转载Hollis原创文章:http://www.hollischuang.com/archives/666 2000年7月,加州大学伯克利分校的Eric Brewer教授在ACM PODC会议上提 ...

  5. 分布式系统之CAP理论杂记[转]

    分布式系统之CAP理论杂记 http://www.cnblogs.com/highriver/archive/2011/09/15/2176833.html 分布式系统的CAP理论: 理论首先把分布式 ...

  6. 分布式系统之CAP理论

    任老师第一节主要讲了分布式系统实现时候面临的八个问题,布置的作业就是这个,查询CAP理论. 笔者初次接触分布式,所以本文主要是一个汇总. 一.CAP起源 CAP原本是一个猜想,2000年PODC大会的 ...

  7. 分布式系统之CAP理论杂记

    分布式系统的CAP理论:理论首先把分布式系统中的三个特性进行了如下归纳:● 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值.● 可用性(A):在集群中一部分节点故障后,集群整体是否 ...

  8. 分布式系统的CAP理论

    一.CAP理论概述 一个分布式系统最多只能同时满足一致性(Consistency).可用性(Availability)和分区容错性(Partition tolerance)这三项中的两项. 二.CAP ...

  9. 重温分布式系统的CAP理论

    1. CAP理论的历史 2000年7月,Eric Brewer教授提出CAP猜想:2年后,Seth Gilbert和Nancy Lynch从理论上证明了CAP:之后,CAP理论正式成为分布式计算领域的 ...

随机推荐

  1. 给WEB初学者的一些有效率的建议

    因为IT互联网发展的非常迅速,而web前端这块很火,目前工资水平给的很高,在市场上也是非常的稀缺人才,现在各个行业转行做web前端的很多,今天给大家一些建议,希望新手少走点弯路吧! 建议一:有一个比较 ...

  2. 全球排名第一的免费开源ERP Odoo 12产品发布会北京站开始报名

    Odoo V12 产品(北京)发布会 暨企业数字化转型论坛 快速报名通道:http://odoochina.mikecrm.com/uG8nNu4 随着新版本Odoo 12的发布,开源智造(OSCG. ...

  3. Android新手引导库推荐

    本文同步至http://javaexception.com/archives/31 介绍一波新手引导层的库.都是star数挺高的一些库. 1.NewbieGuide(国内开发者开发) Android ...

  4. Postgres全文搜索功能

    当构建一个Web应用时,经常被要求加上搜索功能.其实有时候我们也不知道我要搜索个啥,反正就是要有这个功能.搜索确实很重要的特性,这也是为什么像Elasticsearch和Solr这样基于Lucene的 ...

  5. Video/Audio禁止快进(退)

    首先接着上个随笔.上个随笔主要介绍了视频音频的相关操作.属性和方法.这里主要记录一个应用:禁止快进(快退同理). 思路:监听快进事件(此处是监听播放时间更新),利用一个缓存的时间和播放到的时间进行对比 ...

  6. 视频直播 object 标签属性详解

    最近在做视频直播这一块的,html5的video不能实现此功能,在网上查找了资料,觉得很有用. 一.介绍: 我们要在网页中正常显示flash内容,那么页面中必须要有指定flash路径的标签.也就是OB ...

  7. echarts在tab切换时容器宽度设置为100%,只展示100px

    在 mychart.setOption(option); 后面加上 mychart.resize(); 即可

  8. Java地位被撼动?Java与JavaScript的趣事连载

    第一回 JavaScript的进攻 公元2014年,Java 第八代国王终于登上了王位. 第一次早朝,国王坐在高高的宝座上,看着毕恭毕敬的大臣,第一次体会到了皇权的威力. 德高望重的IO大臣颤悠悠地走 ...

  9. java虚拟机内存区域

    java虚拟机运行时数据 程序计数器 是一块较小的内存空间,属于线程私有的内存. 用来记录正在执行的虚拟机字节码指令的地址. 每个线程都需要一个独立的程序计数器,各个线程间的计数器互不影响,独立存储. ...

  10. Java数据结构和算法 - 堆

    堆的介绍 Q: 什么是堆? A: 这里的“堆”是指一种特殊的二叉树,不要和Java.C/C++等编程语言里的“堆”混淆,后者指的是程序员用new能得到的计算机内存的可用部分 A: 堆是有如下特点的二叉 ...