1.了解正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。

正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌了。

正则表达式的大致匹配过程是: 1.依次拿出表达式和文本中的字符比较, 2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。 3.如果表达式中有量词或边界,这个过程会稍微有一些不同。

3.正则表达式相关注解 (1)数量词的贪婪模式与非贪婪模式 正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式”ab”如果用于查找”abbbc”,将找到”abbb”。而如果使用非贪婪的数量词”ab?”,将找到”a”。

注:我们一般使用非贪婪模式来提取。

(2)反斜杠问题 与大多数编程语言相同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反斜杠”\\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。

Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\”表示。同样,匹配一个数字的”\d”可以写成r”\d”。有了原生字符串,妈妈也不用担心是不是漏写了反斜杠,写出来的表达式也更直观勒。

4.Python Re模块 Python 自带了re模块,它提供了对正则表达式的支持。主要用到的方法列举如下:

#返回pattern对象
re.compile(string[,flag])
#以下为匹配所用函数
re.match(pattern, string[, flags])
re.search(pattern, string[, flags])
re.split(pattern, string[, maxsplit])
re.findall(pattern, string[, flags])
re.finditer(pattern, string[, flags])
re.sub(pattern, repl, string[, count])
re.subn(pattern, repl, string[, count])

在介绍这几个方法之前,我们先来介绍一下pattern的概念,pattern可以理解为一个匹配模式,那么我们怎么获得这个匹配模式呢?很简单,我们需要利用re.compile方法就可以。例如

pattern = re.compile(r'hello')

在参数中我们传入了原生字符串对象,通过compile方法编译生成一个pattern对象,然后我们利用这个对象来进行进一步的匹配。

另外大家可能注意到了另一个参数 flags,在这里解释一下这个参数的含义:

参数flag是匹配模式,取值可以使用按位或运算符’|’表示同时生效,比如re.I | re.M。

可选值有:

 • re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
 • re.M(全拼:MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
 • re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为
 • re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
 • re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
 • re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。

在刚才所说的另外几个方法例如 re.match 里我们就需要用到这个pattern了,下面我们一一介绍。

注:以下七个方法中的flags同样是代表匹配模式的意思,如果在pattern生成时已经指明了flags,那么在下面的方法中就不需要传入这个参数了。

(1)re.match(pattern, string[, flags]) 这个方法将会从string(我们要匹配的字符串)的开头开始,尝试匹配pattern,一直向后匹配,如果遇到无法匹配的字符,立即返回None,如果匹配未结束已经到达string的末尾,也会返回None。两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对string向后匹配。下面我们通过一个例子理解一下

__author__ = 'CQC'
# -*- coding: utf- -*-

#导入re模块
import re

# 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”
pattern = re.compile(r'hello')

# 使用re.match匹配文本,获得匹配结果,无法匹配时将返回None
result1 = re.match(pattern,'hello')
result2 = re.match(pattern,'helloo CQC!')
result3 = re.match(pattern,'helo CQC!')
result4 = re.match(pattern,'hello CQC!')

#如果1匹配成功
if result1:
    # 使用Match获得分组信息
    print result1.group()
else:
    print '1匹配失败!'

#如果2匹配成功
if result2:
    # 使用Match获得分组信息
    print result2.group()
else:
    print '2匹配失败!'

#如果3匹配成功
if result3:
    # 使用Match获得分组信息
    print result3.group()
else:
    print '3匹配失败!'

#如果4匹配成功
if result4:
    # 使用Match获得分组信息
    print result4.group()
else:
    print '4匹配失败!'

运行结果

hello
hello
3匹配失败!
hello

匹配分析

1.第一个匹配,pattern正则表达式为’hello’,我们匹配的目标字符串string也为hello,从头至尾完全匹配,匹配成功。

2.第二个匹配,string为helloo CQC,从string头开始匹配pattern完全可以匹配,pattern匹配结束,同时匹配终止,后面的o CQC不再匹配,返回匹配成功的信息。

3.第三个匹配,string为helo CQC,从string头开始匹配pattern,发现到 ‘o’ 时无法完成匹配,匹配终止,返回None

4.第四个匹配,同第二个匹配原理,即使遇到了空格符也不会受影响。

我们还看到最后打印出了result.group(),这个是什么意思呢?下面我们说一下关于match对象的的属性和方法 Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性: 1.string: 匹配时使用的文本。 2.re: 匹配时使用的Pattern对象。 3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。 4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。 5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。 6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法: 1.group([group1, …]): 获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。 2.groups([default]): 以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。 3.groupdict([default]): 返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。 4.start([group]): 返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。 5.end([group]): 返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。 6.span([group]): 返回(start(group), end(group))。 7.expand(template): 将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符’0’,只能使用\g0。

下面我们用一个例子来体会一下

# -*- coding: utf- -*-
#一个简单的match实例

import re
# 匹配如下内容:单词+空格+单词+任意字符
m = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello world!')

print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup
print "m.group():", m.group()
print , )
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print )
print )
print )
print r"m.expand(r'\g \g\g'):", m.expand(r'\2 \1\3')

### output ###
# m.string: hello world!
# m.re:
# m.pos:
# m.endpos:
# m.lastindex:
# m.lastgroup: sign
# m.group(,): ('hello', 'world')
# m.groups(): ('hello', 'world', '!')
# m.groupdict(): {'sign': '!'}
# m.start():
# m.end():
# m.span(): (, )
# m.expand(r'\2 \1\3'): world hello!

(2)re.search(pattern, string[, flags]) search方法与match方法极其类似,区别在于match()函数只检测re是不是在string的开始位置匹配,search()会扫描整个string查找匹配,match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回None。同样,search方法的返回对象同样match()返回对象的方法和属性。我们用一个例子感受一下

#导入re模块
import re

# 将正则表达式编译成Pattern对象
pattern = re.compile(r'world')
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = re.search(pattern,'hello world!')
if match:
    # 使用Match获得分组信息
    print match.group()
### 输出 ###
# world

(3)re.split(pattern, string[, maxsplit]) 按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。我们通过下面的例子感受一下。

import re

pattern = re.compile(r'\d+')
print re.split(pattern,'one1two2three3four4')

### 输出 ###
# ['one', 'two', 'three', 'four', '']

(4)re.findall(pattern, string[, flags]) 搜索string,以列表形式返回全部能匹配的子串。我们通过这个例子来感受一下

import re

pattern = re.compile(r'\d+')
print re.findall(pattern,'one1two2three3four4')

### 输出 ###
# [']

(5)re.finditer(pattern, string[, flags]) 搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。我们通过下面的例子来感受一下

import re

pattern = re.compile(r'\d+')
for m in re.finditer(pattern,'one1two2three3four4'):
    print m.group(),

### 输出 ###
#    

(6)re.sub(pattern, repl, string[, count]) 使用repl替换string中每一个匹配的子串后返回替换后的字符串。 当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。 当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。 count用于指定最多替换次数,不指定时全部替换。

import re

pattern = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'

print re.sub(pattern,r'\2 \1', s)

def func(m):
    ).title() + ).title()

print re.sub(pattern,func, s)

### output ###
# say i, world hello!
# I Say, Hello World!

(7)re.subn(pattern, repl, string[, count]) 返回 (sub(repl, string[, count]), 替换次数)。

import re

pattern = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'

print re.subn(pattern,r'\2 \1', s)

def func(m):
    ).title() + ).title()

print re.subn(pattern,func, s)

### output ###
# ()
# ()

5.Python Re模块的另一种使用方式 在上面我们介绍了7个工具方法,例如match,search等等,不过调用方式都是 re.match,re.search的方式,其实还有另外一种调用方式,可以通过pattern.match,pattern.search调用,这样调用便不用将pattern作为第一个参数传入了,大家想怎样调用皆可。

函数API列表

 match(string[, pos[, endpos]]) | re.match(pattern, string[, flags])
 search(string[, pos[, endpos]]) | re.search(pattern, string[, flags])
 split(string[, maxsplit]) | re.split(pattern, string[, maxsplit])
 findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags])
 finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags])
 sub(repl, string[, count]) | re.sub(pattern, repl, string[, count])
 subn(repl, string[, count]) |re.sub(pattern, repl, string[, count])

具体的调用方法不必详说了,原理都类似,只是参数的变化不同。

芝麻HTTP:Python爬虫入门之正则表达式的更多相关文章

  1. Python爬虫入门之正则表达式

    在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对字符串操作的 ...

  2. 3.Python爬虫入门_正则表达式(简单例子)

    #2019-11-23 import requests import time import re #Python正则表达式库 if __name__=='__main__': #海量爬取图片数据 # ...

  3. 芝麻HTTP:Python爬虫入门之URLError异常处理

    1.URLError 首先解释下URLError可能产生的原因: 网络无连接,即本机无法上网 连接不到特定的服务器 服务器不存在 在代码中,我们需要用try-except语句来包围并捕获相应的异常.下 ...

  4. Python爬虫入门七之正则表达式

    在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对字符串操作的 ...

  5. 转 Python爬虫入门七之正则表达式

    静觅 » Python爬虫入门七之正则表达式 1.了解正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串 ...

  6. Python爬虫入门一之综述

    大家好哈,最近博主在学习Python,学习期间也遇到一些问题,获得了一些经验,在此将自己的学习系统地整理下来,如果大家有兴趣学习爬虫的话,可以将这些文章作为参考,也欢迎大家一共分享学习经验. Pyth ...

  7. 1.Python爬虫入门一之综述

    要学习Python爬虫,我们要学习的共有以下几点: Python基础知识 Python中urllib和urllib2库的用法 Python正则表达式 Python爬虫框架Scrapy Python爬虫 ...

  8. Python爬虫入门六之Cookie的使用

    大家好哈,上一节我们研究了一下爬虫的异常处理问题,那么接下来我们一起来看一下Cookie的使用. 为什么要使用Cookie呢? Cookie,指某些网站为了辨别用户身份.进行session跟踪而储存在 ...

  9. 转 Python爬虫入门一之综述

    转自: http://cuiqingcai.com/927.html 静觅 » Python爬虫入门一之综述 首先爬虫是什么? 网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为 ...

随机推荐

  1. ABP示例程序-使用AngularJs,ASP.NET MVC,Web API和EntityFramework创建N层的单页面Web应用

    本片文章翻译自ABP在CodeProject上的一个简单示例程序,网站上的程序是用ABP之前的版本创建的,模板创建界面及工程文档有所改变,本文基于最新的模板创建.通过这个简单的示例可以对ABP有个更深 ...

  2. Facebook发布React 16 专利条款改为MIT开源协议

    9 月 26 日,用于构建 UI 的 JavaScript 库 React 16 的最新版本上线. Facebook 最终在现有的两种 React 版本中选择了出现 bug 概率最少的一款.这次版本更 ...

  3. Hive on ES

    ES对于类似数据库的SQL查询很无力,可以使用Hive on ES来实现SQL的查询.2个百万级的索引做关联时,需要大概1分多钟,基于es2.1版本. 1.将elasticsearch-hadoop- ...

  4. CF585E. Present for Vitalik the Philatelist [容斥原理 !]

    CF585E. Present for Vitalik the Philatelist 题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\) ...

  5. 基于layui和bootstrap搭建极简后台管理框架

    年前无聊,想自己搭建一个后台管理框架,对比了easyui.Extjs.H-ui.H+UI.layui几个框架,easyui和Extjs虽然功能强大但是界面实在是接受不了,H+UI和layuiAdmin ...

  6. LeetCode - 626. Exchange Seats

    Mary is a teacher in a middle school and she has a table seat storing students' names and their corr ...

  7. .NET 设计模式的六大原则理论知识

    1. 单一职责原则(SRP)(Single Responsibility Principle)2. 里氏替换原则(LSP)(Liskov Substitution Principle)3. 依赖倒置原 ...

  8. ASP.NET Core的身份认证框架IdentityServer4--(3)令牌服务配置访问控制跟UI添加

    使用密码保护API OAuth 2.0 资源所有者密码授权允许一个客户端发送用户名和密码到IdentityServer并获得一个表示该用户的可以用于访问api的Token. 该规范建议仅对" ...

  9. Maven中的pom.xml详解

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  10. RHEL6误安装RHEL7的包导致glibc被升级后系统崩溃处理方法

    RHEL6误使用了RHEL7的光盘源,安装了某个RPM包之后,导致glibc被升级,进而导致系统崩溃.   [root@rhel65 ~]# yum install ftp Loaded plugin ...