最近出了两件大新闻,相信大家可能有所耳闻。

我来当个播报员,给大家转述一下:

1、中国队在第 11 界罗马尼亚数学大师赛(RMM)中无缘金牌。该项赛事是三大国际赛事之一,被誉为中学奥数的最高难度。其中一道题,令中国队全军覆没。

2、一个出自清华姚班,毕业于斯坦福的女博士,她的毕业论文成了学术圈的“爆款”。这篇论文研究的主题是——如何让机器学会理解人类语言?

每天的新闻多如牛毛,唯独这两件引起了我的注意。它们跟本期的荐书栏目也是强关联,下面就给大家说道说道。

上图标出了中国队成绩最好的三名队员。前两人在其它题目全部满分的情况下,第三题竟然是 0 分!什么样的题目能让我们的顶尖高手都束手无策呢?

算了,题目我就不放出来了(我看不懂,不自找其辱。总之你们知道它很难就得了)。但是,那道题是图论的问题,关于图论,我们可以说说它跟计算机科学的关系。

图论是数学的一个分支,它研究的最著名问题有柯尼斯堡七桥问题四色地图问题 ,相信大家都曾见过,而在计算机领域,它也带来了诸多的研究成果:最小生成树问题、旅行商问题(NP困难)、拓扑排序算法、广度优先算法、深度优先算法,等等。

奥数就这样跟程序员的职业联系了起来。然而,更值得一提的是第二个新闻:它研究的是人工智能领域最前沿的话题,想构建一个在深度神经网络之上的阅读理解模型 。简单地说是,教会计算机来阅读文本的能力。

这项研究与大家熟知的数字个人助理不同(如 Alexa、Siri、Google Assistant、Cortana),它的难度超越了简单会话与信息匹配的一般性问题,想克服的是文本级阅读理解,与开放性问答等高度抽象层面的难关。

它的研究成果将给数字个人助理带来质的提升,而对于人类语言文本的阅读理解能力,也必然带来更广阔的应用前途。这一切,都归功于深度学习。

深度学习是我很感兴趣的领域。

我们有幸生在这个时代,见证了 AlphaGo 打败人类的顶尖棋手,正在见证各种 AI 技术的出现,无人驾驶、医疗诊断、AI 翻译、金融科技、深度法律……

我们的未来将被人工智能深远地影响。

本期Python 猫荐书栏目(系列之六),就以此为话题,推荐给大家两本书:

它们都叫《深度学习》,但是内容很不一样。

第一本从应用数学,到深度学习的各种模型、算法与科研问题,走的是极其专业的路线。

而另一本讲的是深度学习的 60 年发展史,以及对智能时代的一些前瞻性预测,走的是通俗科普的路线。

如果要强行划分的话,前一本属理科,主要给相关领域的学生与程序员阅读,而后一本则属文科,面向所有对人工智能的历史与未来感兴趣的人群。

事实上,第一本书被很多人誉为深度学习的圣经,知名度极高,有一个昵称叫作“花书”。

简单梳理一下它的内容:

  • 第一部分是深度学习的基础,包含线性代数与概率论等数学知识,以及梯度优化、拟合、偏差、最大似然估计与监督学习等基础概念;
  • 第二部分是深度学习的关键部分,涉及深度前馈网络、正则化、模型优化的方法、卷积网络、序列建模、与实践应用内容;
  • 第三部分是深度学习研究,例如线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、直面配分函数、近似推断、深度生成模型,等等。

要知道,本专栏是兴趣大于能力,没办法深入剖析这本书的精华,再讲出些令行家也折服的话,但是,这本书值得推荐之处也很显著:它是一种正统的、学院派的、知识全面的、一丝不苟的、偏重理论的书籍,没错,正像是大学里相关专业的指定参考书。

这就意味着,如果想进入深度学习领域,这本书将是你最好的老师。(而且不用考试,手动滑稽)

至于第二本《深度学习》,书的副标题是“智能时代的核心驱动力量 ”。其实这只是翻译的结果,原书的英文名是《The Deep Learning Revolution》。

20 世纪 70 年代到 90 年代是深度学习(神经网络)的寒冬,本书作者既是深度学习的先驱与奠基者,也是打破此寒冬,令深度学习东山再起的大功臣。他名叫特伦斯·谢诺夫斯基 (Terrence Sejnowski)。

特伦斯是谁呢?世界十大AI科学家之一,美国四大国家学院(国家科学院、国家医学院、国家工程院、国家艺术与科学学院)在世仅3位的“四院院士 ”之一,全球AI专业会议NIPS基金会主席。

深度学习的核心技术玻尔兹曼机 ,正是由特伦斯与杰弗里·辛顿共同建立的。

那书的内容是什么呢?这本书在前言中称:这是一本关于深度学习的过去、现在和未来的指南。 在如此宏观的视角下,它主要讲到了一些重要概念的发展、科研群体研究的内容和传承,以及深度学习对当今社会的影响。

也就是说,它不再关心微观的原理、底层的细节、繁复的逻辑。与第一本书的调性截然不同。

这本书以第一人称视角讲述,带入了很多个人的动态:读书经历、研究课题、演讲与会议、人际关系、趣闻、甚至还有八卦(例如差点跟女朋友分手的一次会议。PS:他们在一起了,现在也没分开)。

因此,第二本书的阅读门槛不高,还饶有趣味。

往期荐书回顾:
第一期:《编写高质量代码改善 Python 程序的 91 个建议
第二期:《Python最佳实践指南
第三期:《黑客与画家
第四期:《Python源码剖析
第五期:《Python高性能编程

-------------荐书完-------------

世事无巧不成书。似乎每期荐书都会发生一些巧合,因此我得额外交代几句:

1、我早知第一本书的大名,也翻看过数学部分的一些内容,但是兴趣就止步于此。有打算纳其入荐书系列,但没想到会这么快。至于第二本书,恰好是在上期荐书发布后,中信出版社的营销人员找我约稿,当时这本书还没上市。我并非深度学习领域的专家,只能写写旁观者的言语,既然无法深入,干脆就将它们凑在一起了。

2、荐书栏目不是专业书评,无法讲透全书的技术精粹,但我仍大着胆写了(之所以拖了这么久才动笔,就是因为过于担心)。一方面逼使自己阅读和查资料,快速归纳与写作;另一方面也确实是希望通过自己的文笔,能够使一部分读者获知到原先不知的信息,产生阅读的兴趣。

3、就在前几天(2 月 28 日),一位知名的 Python 博主@Vamei 因抑郁症自杀了。我在看资料的时候,发现他也写了第二本《深度学习》的书评。他发布的时间是 1 月 31 日,而在这个时间,新书还未上市。这意味着他可能跟我一样,都收到了出版社的预读本,我们就是那么巧合地在同样的时间里阅读着同一本还未上市的新书。我想,这本书大概就是在给我传递一个讯息。我有很多次想过放弃邀约(无稿费,赠书一本)、放弃写这一篇荐书,直到前几天才真正开始动笔。这个神秘的讯息就这么巧地传过来了。荐书,见人。

4、Vamei 的豆瓣主页写道:

Vamei 是赤道附近一个台风的名字。按照气象规律,台风不常出现在赤道。所以,Vamei是一个离群的风,无所顾忌地生长,不着边际地游荡。

5、Vamei的书评:https://book.douban.com/review/9928103/

Python猫荐书系列:文也深度学习,理也深度学习的更多相关文章

  1. Python猫荐书系列之五:Python高性能编程

    稍微关心编程语言的使用趋势的人都知道,最近几年,国内最火的两种语言非 Python 与 Go 莫属,于是,隔三差五就会有人问:这两种语言谁更厉害/好找工作/高工资…… 对于编程语言的争论,就是猿界的生 ...

  2. Python猫荐书系列之七:Python入门书籍有哪些?

    本文原创并首发于公众号[Python猫],未经授权,请勿转载. 原文地址:https://mp.weixin.qq.com/s/ArN-6mLPzPT8Zoq0Na_tsg 最近,猫哥的 Python ...

  3. 每周荐书:云原生、Docker、Web算法(评论送书)

    每周荐书:云原生.Docker.Web算法(评论送书) 感谢大家对每周荐书栏目的支持,先公布下上周中奖名单 名优秀评论可以免费获得此书.   云原生应用架构实践 云原生架构,关注简化开发流程.提升研发 ...

  4. 大牛推荐的30本经典编程书籍,从Python到前端全系列。

    注:为了方便阅读与收藏,我们也制作了30本书籍完整清单的Markdown.PDF版以及思维导图版,大家可以在实验楼公众号后台回复关键字"书籍推荐"获取. Python 系列(10本 ...

  5. 每周荐书:Kotlin、分布式、Keras(评论送书)

    每周荐书:Kotlin.分布式.Keras(评论送书) 感谢大家对每周荐书栏目的支持,先公布下上周中奖名单 法式三文鱼 名优秀评论可以免费获得此书.   Kotlin实战 首著席卷而来 Android ...

  6. 02基于python玩转人工智能最火框架之TensorFlow人工智能&深度学习介绍

    人工智能之父麦卡锡给出的定义 构建智能机器,特别是智能计算机程序的科学和工程. 人工智能是一种让计算机程序能够"智能地"思考的方式 思考的模式类似于人类. 什么是智能? 智能的英语 ...

  7. 每周荐书:机器学习、Java虚拟机、微信开发(评论送书)

    每周荐书:机器学习.Java虚拟机.微信开发(评论送书) 感谢大家对每周荐书栏目的支持,先公布下上周中奖名单 年精心雕琢,难得的"理论 + 实战案例 + 趟坑经验"总结 从需求分析 ...

  8. 学习《深度学习入门:基于Python的理论与实现》高清中文版PDF+源代码

    入门神经网络深度学习,推荐学习<深度学习入门:基于Python的理论与实现>,这本书不来虚的,一上来就是手把手教你一步步搭建出一个神经网络,还能把每一步的出处讲明白.理解神经网络,很容易就 ...

  9. 零基础自学Python是看书还是看视频?

    很多人都碍于Python培训班的高昂费用和有限的空余时间都选择自学Python,但是没有老师帮助,显得有些迷茫,不知应该从何处学起,也不知识看书学习还是应该看视频学习.本就来谈谈这个话题.   我们先 ...

随机推荐

  1. 如何优雅的关闭Java线程池

    面试中经常会问到,创建一个线程池需要哪些参数啊,线程池的工作原理啊,却很少会问到线程池如何安全关闭的. 也正是因为大家不是很关注这块,即便是工作三四年的人,也会有因为线程池关闭不合理,导致应用无法正常 ...

  2. [Java算法分析与设计]--线性结构与顺序表(List)的实现应用

    说到线性结构,我们应该立马能够在脑子里蹦出"Array数组"这个词.在Java当中,数组和对象区别基本数据类型存放在堆当中.它是一连串同类型数据存放的一个整体.通常我们定义的方式为 ...

  3. Oracle-11:联合查询

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 联合查询的实际上的意义就是从俩个结果集中拿有特定联系的结果封装为一个结果集 数据库脚本给放一份,供测试使用 c ...

  4. Intent里ACTION的CALL和DIAL的区别?

    Intent在进行activity之间的跳转的时候有一种方式是通过设置ACTION的方式来进行跳转的,这个ACTION是设置在manifest文件里Intent-filter里的,我们可以通过跳转自定 ...

  5. 【手记】ASP.NET提示“未能创建类型”处理

    我是在本机启动IIS Express调试一个ashx(一般处理程序)时遇到这个报错,网上的说法普遍有这么几种: 把bbb.ashx中的Class="aaa.bbb" 改为Class ...

  6. Java基础小知识1——分别使用字节流和字符流复制文件

    在日常使用计算机过程中经常会涉及文件的复制,今天我们就从Java代码的角度,看看在Java程序中文件复制的过程是如何实现的. 1.使用字节流缓冲区复制文件 示例代码如下: import java.io ...

  7. [ Java面试题 ]泛型篇

    1.Java中的泛型是什么 ? 使用泛型的好处是什么? 泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数. 好处: 1.类型安全,提供编译期间的类 ...

  8. bootstrap模态框内容替换时会重新触发模态框?<a>标签到底有哪些特殊的特性呢?

    segmentfault提问 这个问题我将bootstrap导航栏的<a>去除就解决了,那么问题来了,<a>标签到底有哪些特殊的特性呢? 主要属性href 链接href 这是一 ...

  9. 你不知道的JavaScript--Item14 使用prototype的几点注意事项

    1.在prototype上保存方法 不使用prototype进行JavaScript的编码是完全可行的,例如: function User(name, passwordHash) { this.nam ...

  10. ubuntu16.04如何安装搜狗输入法

    1 . 首先我们需要先来下载支持linux版本的搜狗输入法安装包,这里我们先查看下自己的ubuntu系统是什么版本的,这里我们可以在右上角的那个齿轮图标点击查看"系统设置",在里面 ...