MySQL之B+树索引(转自掘金小册 MySQL是怎样运行的,版权归作者所有!)
每个索引都对应一棵
B+
树,B+
树分为好多层,最下边一层是叶子节点,其余的是内节点。所有用户记录
都存储在B+
树的叶子节点,所有目录项记录
都存储在内节点。InnoDB
存储引擎会自动为主键(如果没有它会自动帮我们添加)建立聚簇索引
,聚簇索引的叶子节点包含完整的用户记录。我们可以为自己感兴趣的列建立
二级索引
,二级索引
的叶子节点包含的用户记录由索引列 + 主键
组成,所以如果想通过二级索引
来查找完整的用户记录的话,需要通过回表
操作,也就是在通过二级索引
找到主键值之后再到聚簇索引
中查找完整的用户记录。B+
树中每层节点都是按照索引列值从小到大的顺序排序而组成了双向链表,而且每个页内的记录(不论是用户记录还是目录项记录)都是按照索引列的值从小到大的顺序而形成了一个单链表。如果是联合索引
的话,则页面和记录先按照联合索引
前边的列排序,如果该列值相同,再按照联合索引
后边的列排序。通过索引查找记录是从
B+
树的根节点开始,一层一层向下搜索。由于每个页面都按照索引列的值建立了Page Directory
(页目录),所以在这些页面中的查找非常
首先我们需要知道在innoDB中一条记录的格式:
将记录格式的其他信息
去掉并把它竖起来的效果就是这样
把一些记录放到页里边的示意图就是:
注意record_type的取值不同,代表着该条记录有不同的含义:
一个页面里面里的记录通过next_record指针串成一个链表,为了查找方便,为这个链表设置了两个虚拟头节点: 最小记录和最大记录:
record_type = 1表示是最小记录,record_type = 3表示是最大记录。
record_type = 0表示是普通用户记录。
record_type = 2表示是索引项目记录。这个后面再说。
页分裂
假设我们的每个数据页最多能存放3条记录(实际上一个数据页非常大,可以存放下好多记录),innoDB在插入数据项的时候,会按照主键值的大小顺序串联成一个单向链表:
上图中的三条记录按照主键(橙色)由小到大的顺序串成一个链表
此时我们再插入一条记录,因为页10
最多只能放3条记录,所以我们不得不再分配一个新页:
页10
中用户记录最大的主键值是5
,而页28
中有一条记录的主键值是4
,因为5 > 4
,所以这就不符合下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值的要求,所以在插入主键值为4
的记录的时候需要伴随着一次记录移动,也就是把主键值为5
的记录移动到页28
中,然后再把主键值为4
的记录插入到页10
中。我们必须通过一些诸如记录移动的操作来始终保证这个状态一直成立:下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值。这个过程我们也可以称为页分裂
。
B+
树索引在空间和时间上都有代价,所以没事儿别瞎建索引。B+
树索引适用于下边这些情况:- 全值匹配
- 匹配左边的列
- 匹配范围值
- 精确匹配某一列并范围匹配另外一列
- 用于排序
- 用于分组
在使用索引时需要注意下边这些事项:
- 只为用于搜索、排序或分组的列创建索引
- 为列的基数大的列创建索引
- 索引列的类型尽量小
- 可以只对字符串值的前缀建立索引
- 只有索引列在比较表达式中单独出现才可以适用索引
- 为了尽可能少的让
聚簇索引
发生页面分裂和记录移位的情况,建议让主键拥有AUTO_INCREMENT
属性。 - 定位并删除表中的重复和冗余索引
- 尽量使用
覆盖索引
进行查询,避免回表
带来的性能损耗。
其他的部分见掘金小册!
MySQL之B+树索引(转自掘金小册 MySQL是怎样运行的,版权归作者所有!)的更多相关文章
- MySQL之 InnoDB记录结构(转自掘金小册 MySQL是怎样运行的,版权归作者所有!)
以下内容来自掘金小册 MySQL 是怎样运行的:从根儿上理解 MySQL 版权归原作者所有! 页是MySQL中磁盘和内存交互的基本单位,也是MySQL是管理存储空间的基本单位. 指定和修改行格式的语法 ...
- MySQL之InnoDB数据页结构(转自掘金小册 MySQL是怎样运行的,版权归作者所有!)
InnoDB为了不同的目的而设计了不同类型的页,我们把用于存放记录的页叫做数据页. 一个数据页可以被大致划分为7个部分,分别是 File Header,表示页的一些通用信息,占固定的38字节. Pag ...
- SQL优化 MySQL版 - B树索引详讲
SQL优化 MySQL版 - -B树索引详讲 作者:Stanley 罗昊 [转载请注明出处和署名,谢谢!] 为什么要进行SQL优化呢?很显然,当我们去写sql语句时: 1会发现性能低 2.执行时间太 ...
- MySQL的B+树索引和hash索引的区别
简述一下索引: 索引是数据库表中一列或多列的值进行排序的一种数据结构:索引分为聚集索引和非聚集索引,聚集索引查询类似书的目录,快速定位查找的数据,非聚集索引查询一般需要再次回表查询一次,如果不使用索引 ...
- MySQL的B树索引与索引优化
MySQL的MyISAM.InnoDB引擎默认均使用B+树索引(查询时都显示为"BTREE"),本文讨论两个问题: 为什么MySQL等主流数据库选择B+树的索引结构? 如何基于索引 ...
- 搞懂MySQL InnoDB B+树索引
一.InnoDB索引 InnoDB支持以下几种索引: B+树索引 全文索引 哈希索引 本文将着重介绍B+树索引.其他两个全文索引和哈希索引只是做简单介绍一笔带过. 哈希索引是自适应的,也就是说这个不能 ...
- Mysql之B+树索引实战
索引代价 空间上的代价 一个索引都对应一棵B+树,树中每一个节点都是一个数据页,一个页默认会占用16KB的存储空间,所以一个索引也是会占用磁盘空间的. 时间上的代价 索引是对数据的排序,那么当对表中的 ...
- MySQL中B+树索引的使用
1) 不同应用中B+树索引的使用 对于OLTP应用,由于数据量获取可能是其中一小部分,建立B+树索引是有异议时的 对OLAP应用,情况比较复杂,因为索引的添加应该是宏观的而不是微观的. ...
- 为什么MySQL字符串不加引号索引失效?《死磕MySQL系列 十一》
群里一个小伙伴在问为什么MySQL字符串不加单引号会导致索引失效,这个问题估计很多人都知道答案.没错,是因为MySQL内部进行了隐式转换. 本期文章就聊聊什么是隐式转换,为什么会发生隐式转换. 系列文 ...
随机推荐
- ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10061)解决办法
一,报错原因及分析 mysql的这个报错的原因是mysql服务没有正确启动就是mysqld这个程序. mysql要想运行需要mysql和mysqld两个都启动才行 二,解决办法 右键我的电脑——> ...
- Python爬虫实例:爬取猫眼电影——破解字体反爬
字体反爬 字体反爬也就是自定义字体反爬,通过调用自定义的字体文件来渲染网页中的文字,而网页中的文字不再是文字,而是相应的字体编码,通过复制或者简单的采集是无法采集到编码后的文字内容的. 现在貌似不少网 ...
- 【转载】 Sqlserver中通过Select Into语句快速单表备份
在Sqlserver数据库中,备份数据的方式有很多种,可以使用整个数据库备份,也可使用导出包含数据和架构的脚本文件的方式来进行单表或多表数据的备份,其实还有一种Select Into的方式可以快速备份 ...
- int16, int32, int64等类型说明
Int16 相当于 short 占2个字节 -32768 ~ 32767 Int32 相当于 int 占4个字节 -2147483648 ~ 2147483647 Int64 ...
- SpringEl表达式(转)
什么是SpringEL? Spring3中引入了Spring表达式语言—SpringEL,SpEL是一种强大,简洁的装配Bean的方式,他可以通过运行期间执行的表达式将值装配到我们的属性或构造函数当中 ...
- H5与C3权威指南笔记--box-shadow
box-shadow 用于给盒子添加阴影效果.IE9+ 举个栗子:box-shadow: inset 5px 5px 5px red; inset可选,该值会让阴影出现在盒子内部. 第一个5px是阴影 ...
- Dotnetcore 开发速记
1.System.InvalidOperationException:"Internal connection fatal error." 全球固定模式,坑爹 https://gi ...
- IM多类型holder封装
如标题,这是一个在列表多类型视图时的一个简化封装方法,减少多余代码,提高复用性,更好迭代扩展,先看视图列表效果图 GitHub:https://github.com/1024477951/Fragme ...
- Android 注解框架对比
Java的注解(Annotation)相当于一种标记,在程序中加入注解就等于为程序打上某种标记,标记可以加在包,类,属性,方法,本地变量上.然后你可以写一个注解处理器去解析处理这些注解(人称编译时注解 ...
- VR一体机如何退出FFBM
Fast Factory Boot Mode(FFBM)是一种半开机的模式,它的主要目的是方便工厂测试,提高生产效率.正常情况下终端用户是不会碰到的.但售后的同学最近连续收到几台客户退 ...