计算式

\[
S(n,m)=S(n-1,m-1)+mS(n,m)
\]

\(S(0,0)=1,S(i,0)=0(i>0)\)

组合意义

将\(n\)个不可分辨的小球放入\(m\)个不可分辨的盒子中,且每个盒子非空

那么上面的式子就类似与\(dp\)的转移了

性质

1、\(S(n,m)=\frac{1}{m!}\sum_{i=0}^m(-1)^i\dbinom{m}{i}(m-i)^n\)

证明:考虑组合意义

先将盒子变成有序,最后除以\(m!\)即可

第二类斯特林数保障每个盒子非空,故考虑容斥,每次钦定\(i\)个盒子必须为空,选法有\(\dbinom{m}{i}\)种,\(n\)个小球放入剩下的\((m-i)\)个盒子中共有\((m-i)^n\)种放法

2、\(n^m=\sum_{i=0}^nS(m,i)*i!*\dbinom{n}{i}\)

证明:依然是考虑组合意义,左边是\(m\)个小球随意的放入\(n\)个盒子的方案数,并且考虑顺序

右边是枚举非空的盒子一共有\(i\)个,球放入的方案数为\(S(m,i)\),有顺序的选\(i\)个盒子有\(i!*\dbinom{n}{i}\)种方案

关于这个式子还有一个小技巧:为了使\(S(m,i)\)和\(\dbinom{n}{i}\)的值均大于\(0\),一定有\(i\leq min(n,m)\),所以我们枚举的sigma上界是可以根据我们的需求进行变化的

求解第二类斯特林数

求\(S(n,m)\)的值

普通求解是\(O(n^2)\)的递推,考虑其他的方法

由性质1的式子变形可以得到
\[
S(n,m)=\frac{1}{m!}\sum_{i=0}^m(-1)^i\frac{m!}{k!(m-k)!}(m-k)^n
\]

\[
S(n,m)=\sum_{i=0}^n\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}
\]

直接FFT即可,时间复杂度\(O(nlogn)\)

特殊计数序列——第二类斯特林(stirling)数的更多相关文章

  1. HDU2643(SummerTrainingDay05-P 第二类斯特林数)

    Rank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  2. 8-机器分配(hud4045-组合+第二类斯特林数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...

  3. 新疆大学(新大)OJ xju 1006: 比赛排名 第二类斯特林数+阶乘

    题目链接:http://acm.xju.edu.cn/JudgeOnline/problem.php?id=1006 第二类斯特林数: 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的 ...

  4. Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...

  5. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  6. 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

    [BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...

  7. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

  8. HDU - 4625 JZPTREE(第二类斯特林数+树DP)

    https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...

  9. 【CF961G】Partitions 第二类斯特林数

    [CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...

随机推荐

  1. AspNetCore 基于AOP实现Polly的使用

    前言   说起AOP,其实我们在做MVC/API 的时候应该没少接触,比如说各种的Fitter 就是典型的AOP了. 本来在使用Polly的时候我最初的打算是使用过滤器来实现的,后来发现实现起来相当的 ...

  2. C#实现.ini文件读写操作

    1.ini文件是什么?        见百度百科:https://baike.baidu.com/item/ini%E6%96%87%E4%BB%B6/9718973?fr=aladdin 2.C#语 ...

  3. List去重的实现

    List<T> 当T为值类型的时候 去重比较简单,当T为引用类型时,一般根据业务需要,根据T的中几个属性来确定是否重复,从而去重. 查看System.Linq下的Enumerable存在一 ...

  4. java爬虫系列目录

    1. java爬虫系列第一讲-爬虫入门(爬取动作片列表) 2. java爬虫系列第二讲-爬取最新动作电影<海王>迅雷下载地址 3. java爬虫系列第三讲-获取页面中绝对路径的各种方法 4 ...

  5. 对HTML5标签的认识(三)

    这篇随笔继续来认识HTML标签.这次随笔主要是对<table>标签的认识和最近我学习到的一些标签来和大家分享. 一.<table>标签 <table>标签的作用主要 ...

  6. Java基础差,需要怎么补

    本文首发于本博客 猫叔的博客,转载请申明出处 感谢sugar的提问:Java基础差,需要怎么补? 欢迎关注公众号:Java猫说 我整体的总结了一下,大致分为以下的几个点说一下: 1.善于使用搜索引擎 ...

  7. js基础复习点

    1.变量   var num=10;       var num1,num2,num3;   num1=10;   num2=20;   num3=30;       var num1=10,num2 ...

  8. jQuery内容过滤选择器与子元素过滤选择器用法实例分析

    jQuery选择器内容过滤 一.:contains(text) 选择器::contains(text)描述:匹配包含给定文本的元素返回值:元素集合 示例: ? 1 2 $("div.mini ...

  9. 2D射影几何和变换

    阅读<计算机视觉中的多视图集合> 2D射影几何和变换 2D射影平面 本章的关键是理解线和点的对偶性.从射影平面模型出发,IP^2^内的点(a, b ,c)由IP^3^空间中一条过原点的射线 ...

  10. Azure存储账户的日志分析方法

    1.首先确认日志功能是否开启(日志文件根据存储账户的类型,按使用量收费 . 2.在存储账户-Usage(classic)-Metrics中查看突出流量的时间: 3.在Explorer中下载对应时间点的 ...