华为5G空口新技术(2015年)
2015-03-24
长江后浪推前浪,4G建设方兴未艾,业界关于5G的讨论已如火如荼。对于每一代移动通信,空口技术都相当于王冠上的明珠。
在月初的世界移动通信大会上,华为发布了面向5G的新空口,并展出了涵盖基础波形、多址方式、信道编码、双工模式等在内的系列化5G空口候选新技术,成为业界瞩目的焦点,展区现场总是被围得水泄不通(有图有真相哦)。
几乎所有客户都对灵活自适应的空口波形技术F-OFDM(Filtered OFDM)和成倍提升频谱效率的多址技术SCMA(Sparse Code Multiple Access)兴趣盎然,今天我们就以大话的方式,来聊一聊这两大新空口候选技术。
图1巴展华为5G新空口展示区
咦,为啥是候选?是因为谦虚吗?这个问题问的很好。低调只是一方面,另外是因为5G标准预计16年才会启动,现在提的技术当然都是候选啦。
3G时代的空口核心技术是啥?CDMA!4G的空口核心技术是啥?OFDM!这些都难不倒大家,那5G时代的空口核心技术会是啥?
在回答这个问题之前,我们要先回答的是,5G时代对空口技术有什么新的要求?
5G时代的应用将空前繁荣,不同应用对空口技术要求也是复杂多样的,因此最重要的当然是灵活性和应变能力,正如三国王弼所说“用无常道,事无轨度,动静屈伸,唯变所适”,一个统一的空口必须能解决所有问题,灵活适配各种业务,不管你是自动驾驶要求的1ms时延,还是3D全息影像要求的xGbps的带宽,亦或是每平方公里几十万的物联网传感器连接数,通通都能Hold住,频谱效率再翻个几倍,那运营商就再也不用担心网络能力问题啦,so easy!而F-OFDM与SCMA正是构建5G自适应新空口的基础。
温故而知新,在聊第一个核心技术F-OFDM之前,我们先简单回顾一下OFDM这个技术,看看OFDM为什么满足不了5G时代的要求。OFDM将高速率数据通过串并转换调制到相互正交的子载波上去,并引入循环前缀,较好的解决了令人头疼的码间串扰问题,在4G时代大放异彩。但OFDM最主要问题就是不够灵活。
我们前面提到,未来不同的应用,对于技术的要求迥异,比如端到端1ms时延的车联网业务,要求极短的时域Symbol和TTI,这就需要频域较宽的子载波带宽;而物联网的多连接场景,单传感器传送数据量极低,但对系统整体连接数要求很高,这就需要在频域上配置比较窄的子载波带宽,而在时域上,Symbol的长度以及TTI都可以足够长,几乎不需要考虑码间串扰问题,也就不需要再引入CP,同时异步操作还可以解决终端省电的问题。5G的这些灵活的要求,对于OFDM来说,真的是做不到啊!为啥呢?
我们来看下OFDM的时频资源分配方式(如图2),在频域子载波带宽是固定的15KHz(7.5KHz仅用于MBSFN),而子载波带宽确定之后,其时域Symbol的长度、CP长度等也就基本确定啦。
图2 OFDM的时频资源分配方式
为了更好理解,我们可以把系统的时频资源理解成一节车厢(图3),采用OFDM方案装修的话,火车上只能提供固定大小的硬座(子载波带宽),所有人,不管胖子瘦子、有钱没钱,都只能坐一样大小的硬座。这显然不科学、不人性化嘛,也无法满足人民日益增长的物质文化需要啊。
对于5G我们希望座位和空间都能够根据乘客的高矮胖瘦灵活定制,硬座、软座、卧铺、包厢,想怎么调整都行,这才是自适应的和谐号列车嘛。这一切,通过华为提出的F-OFDM就可以做到。
图3
OFDM/F-OFDM车厢截面对比图
从图4我们可以详细看到F-OFDM能为不同业务提供不同的子载波带宽和CP配置,以满足不同业务的时频资源需求。这时一定有人会问,不同带宽的子载波之间,本身不再具备正交的特性了,就需要引入保护带宽啊,比如OFDM就需要10%的保护带宽,这样一来,F-OFDM灵活性是保证了,频谱利用率会不会降低呀?就像这些奇奇怪怪形状和大小的座位都挤在一起,火车空间利用率肯定会降低啊,正所谓鱼与熊掌不可兼得,灵活性与系统开销看起来就是一对矛盾啊。
但是,F-OFDM真的可以兼得哦,通过优化滤波器的设计,可以把不同带宽子载波之间的保护频带最低做到一个子载波带宽,真是彪悍啊!!!
图4 F-OFDM的时频资源分配方式
好了,第一个核心技术F-OFDM就介绍完了。聪明的大家一定会追问,F-OFDM解决了业务灵活性的问题,对于5G,这就够了吗?当然不够,我们还得再考虑考虑怎么利用有限的频谱,提高效率,容纳更多用户,提升更高吞吐率的问题啊。
还是用火车的例子吧,虽然我们针对不同业务需求,划分了不同的座位,但是怎么在这一列有限空间的火车里,装更多的人呢?伟大的人民总是有无穷无尽的智慧,最简单的办法请往下看,系统容量瞬间翻番不是梦啊。
图5 系统容量翻番案例
不过等等,这样系统容量是扩大了,但是用户都挤在一起,彻底没法区分了,多用户解调就成Mission
Impossible了,此路不通啊,还是得想其他办法。
前面我们通过F-OFDM已经实现了在频域和时域的资源灵活复用,并把保护带宽降到了最小,为了进一步压榨频谱效率,还有哪些域的资源能复用呢?最容易想到的当然是空域和码域啊!
空域的MIMO技术在LTE时代就提出来了,在5G时代会通过更多的天线数来进一步发扬光大。那码域呢,在LTE时代它好像被遗忘了,在5G时代能不能再发挥一把余热呢?Bingo!天才的想法,总是在这么不经意间灵光闪现!华为提出第二个核心技术SCMA(Sparse Code Multiple Access),正是采用这一思路,引入稀疏码本,通过码域的多址实现了频谱效率的3倍提升,下面我们来详细探究一下。
F-OFDM已经实现了火车座位(子载波)根据旅客(业务需求)进行了自适应,进一步提升频谱效率就是需要在有限的座位(子载波)上塞进更多用户。方法说来也简单,座位就那么多,大家挤挤呗。
打个比方,4个同类型的并排座位,我们完全可以塞6个人进去挤一挤嘛,这样不就轻松的实现了1.5倍的频谱效率提升了吗?听起来道理很简单吧,可是实现起来可不简单哦。这就涉及SCMA的第一个关键技术—低密度扩频,把单个子载波的用户数据扩频到4个子载波上,然后6个用户共享这4个子载波(参见图6)。之所以叫低密度扩频,是因为用户数据只占用了其中2个子载波(图中有颜色的格子),另外2个子载波是空的(图中白色的格子),这就相当于6个乘客坐4个座位,那每个乘客的屁股最多坐两个座位嘛。这也是SCMA中Sparse(稀疏)的来由。
为啥一定要稀疏呢?如果不稀疏就是在全载波上扩频,那同一个子载波上就有6个用户的数据,冲突太厉害,多用户解调彻底就没法干啦。
图6 SCMA原理图
但是4个座位(子载波)塞了6个用户之后,乘客之间就不严格正交了(每个乘客占了两个座位啊,没法再通过座位号(子载波)来区分乘客了),如图所示,单一子载波上还是有3个用户的数据冲突了,多用户解调还是存在困难啊。
这时候我们就用到了SCMA第二个关键技术,叫做高维调制。高维调制这个概念非常抽象,因为我们传统的IQ调制只有两维啊,幅度和相位,多出来的维代表啥呢?这里需要大家开一下脑洞,想象一下三体世界里半人马座α星人把一个质子展开到多维空间雕刻电路后再降维的过程,最终一个质子变成了一个无所不能的计算机,质子还是那个质子,不过功能大大增强啦。
同样,我们通过高维调制技术,调制的还是相位和幅度,但是最终使得多用户的星座点之间欧氏距离拉的更远,多用户解调和抗干扰性能大大增强了。每个用户的数据都使用系统分配的稀疏码本进行了高维调制,而系统又知道每个用户的码本,就可以在不正交的情况下,把不同用户最终解调出来啦。这就相当于虽然我没法再用座位号来区分乘客,但是我给这些乘客贴上不同颜色的标签,结合座位号我还是能够把乘客给区分出来。
就这样,SCMA在使用相同频谱的情况下,通过引入码域的多址,大大提升了频谱效率,通过使用数量更多的载波组,并调整稀疏度(多个子载波中单用户承载数据的子载波数),频谱效率可以提升3倍甚至更高。
好啦,关于F-OFDM和SCMA我们就介绍到这儿吧,相信有了这两大空口关键技术支撑, 5G时代将带给我们更多革命性的业务体验,让我们拭目以待吧!
华为5G空口新技术(2015年)的更多相关文章
- 华为5G折叠屏幕适配
华为5G折叠屏幕的发布,迎来新的一个设备——移动端的折叠设备华为Max;华为Max设备分辨率有以下几种 8.0,6.8,6.38,这三种场景下页面展示都是不一样的表现,需要我们在开发中注意监听屏幕变化 ...
- LTE空口协议——是空口3GPP协议 不是网络IP协议
[LTE基础知识]LTE空口协议分析 from:https://www.mscbsc.com/viewnews-102038.html控制面协议 控制面协议结构如下图所示. PDCP在网络侧终止于eN ...
- python构造wireshark可以解析的LTE空口数据
Wireshark是可以解析LTE的空口数据.但是在wireshark的实现中,这些数据都是被封装到UDP报文中.然后根据wireshark的格式文件对LTE的数据加上头信息.头信息的定义参考附件pa ...
- 华为交换机Console口属性配置
华为交换机Console口属性配置 一.设置通过账号和密码(AAA验证)登陆Console口 进入 Console 用户界面视图 <Huawei>system-view [Huawei]u ...
- 华为5G在印度被禁
前段时间,澳大利亚政府以“担心外国渗透”为由,决定禁止华为为建设新的5G网络提供设备.这让大家不禁猜测,难道华为的5G真的被国外市场禁入了? 对此,华为表达出了极大的失落感,并在一份声明中称,“政府告 ...
- Cisco AP-Sniffer模式空口抓包
第一步:WLC/AP侧 配置AP为sniffer模式: 配置提交后,AP会重启,并且将不能发出SSID为clients提供服务. 第二步:一旦AP重新加入WLC,配置AP抓取的信道和抓取后的数据包发 ...
- 无线基站侧的信令风暴根因——频繁的释放和连接RRC产生大量信令、设备移动导致小区重选信令增加、寻呼信令多
全局思维(核心网和无线基站侧都会有信令风暴): LTE网络系统可能出现信令风暴的原因,大致可以总结出以下几点: 1.网络架构的变化,导致4G核心网信令流量较2G/3G大幅增加 a)架构扁平化:LTE网 ...
- 5G为何采纳华为力挺的Polar码?一个通信工程师的大实话
Polar码被采纳为5G eMBB场景的控制信道编码,这两天连续被这条消息刷屏,连吃瓜群众都直呼好爽. 然而,随着媒体报道的持续发酵,真相在口口相传中变了形,不乏夸大不实之嫌,小编终于坐不住了,也想吐 ...
- [转][业界动态] 5G为何采纳华为力挺的Polar码?一个通信工程师的大实话
本文转自:http://xinsheng.huawei.com/cn/index.php?app=forum&mod=Detail&act=index&id=3264791 P ...
随机推荐
- H5天气查询demo(二)
最近刚好有空,学长帮忙让做个毕设,于是我提到了那个基于H5地理位置实现天气查询的方法,学长听了也觉得不错,于是就这个主题,扩展了一下,做了一个航班管理查询系统,为上次博客中提到的利用H5 api中的经 ...
- 修复 Visual Studio Error “No exports were found that match the constraint”
清空Visual Studio 文件缓存目录 Just delete or rename this folder: %AppData%\..\Local\Microsoft\VisualStudio\ ...
- 在公有云AZURE上部署私有云AZUREPACK以及WEBSITE CLOUD(四)
(四)搭建Website Cloud环境 1安装CONTROLLER主机 在开始安装Web site Cloud之前,读者应该对该服务的拓扑结构有个大概了解. 如图: Controller是非常重要的 ...
- Python 历遍目录
Automate the Boring Stuff 学习笔记 01 使用 os 模块的 walk() 函数可以实现历遍目录的操作,该函数接收一个绝对路径字符串作为必选参数,返回三个参数: 当前目录—— ...
- HTML常用标签
HTML常用标签: HTML文档格式: 首先,HTML是一种超文本标签语言,它是制作网页的基础. 其次,HTML文档中至少包含基本的和成对的<html> </html>.< ...
- ArcGIS中的标注和注记
在ArcMap中可以使用标注和注记来识别要素,选择标注或注记取决于你需要如何控制文本显示以及在ArcMap中如何存储文本. 1.标注只是临时显示相关数据或字段 2.标注用于长时间保存数据以及显示方式. ...
- 用Kotlin语言重新编写Plaid APP:经验教训(I)
原文标题:Converting Plaid to Kotlin: Lessons learned (Part 1) 原文链接:http://antonioleiva.com/plaid-kotlin- ...
- iOS通知的整理笔记
iOS通知用于高耦合界面的传值确实方便快捷. 需要实现模态弹出的视图控制器上,有一个视图控制器可以导航.这必定要将这个视图控制器的导航视图控制器naVC.view添加到模态弹出的视图控制器presen ...
- 阶段一:为View设置阴影和弹出动画(天气应用)
“阶段一”是指我第一次系统地学习Android开发.这主要是对我的学习过程作个记录. 上一篇阶段一:通过网络请求,获得并解析JSON数据(天气应用)完成了应用的核心功能,接下来就要对它进行优化.今天我 ...
- 解决adobe air sdk打包 apk后自动在包名前面加上air. (有个点)前缀的问题
早就找到了这个方法,但是一直忙没心思写博客. 默认情况下,所有 AIR Android 应用程序的包名称都带 air 前缀.若不想使用此默认行为,可将计算机环境变量 AIR_NOANDROIDFLAI ...