问题

(1)ConcurrentSkipListSet的底层是ConcurrentSkipListMap吗?

(2)ConcurrentSkipListSet是线程安全的吗?

(3)ConcurrentSkipListSet是有序的吗?

(4)ConcurrentSkipListSet和之前讲的Set有何不同?

简介

ConcurrentSkipListSet底层是通过ConcurrentNavigableMap来实现的,它是一个有序的线程安全的集合。

源码分析

它的源码比较简单,跟通过Map实现的Set基本是一致,只是多了一些取最近的元素的方法。

为了保持专栏的完整性,我还是贴一下源码,最后会对Set的整个家族作一个对比,有兴趣的可以直接拉到最下面。

// 实现了NavigableSet接口,并没有所谓的ConcurrentNavigableSet接口
public class ConcurrentSkipListSet<E>
extends AbstractSet<E>
implements NavigableSet<E>, Cloneable, java.io.Serializable { private static final long serialVersionUID = -2479143111061671589L; // 存储使用的map
private final ConcurrentNavigableMap<E,Object> m; // 初始化
public ConcurrentSkipListSet() {
m = new ConcurrentSkipListMap<E,Object>();
} // 传入比较器
public ConcurrentSkipListSet(Comparator<? super E> comparator) {
m = new ConcurrentSkipListMap<E,Object>(comparator);
} // 使用ConcurrentSkipListMap初始化map
// 并将集合c中所有元素放入到map中
public ConcurrentSkipListSet(Collection<? extends E> c) {
m = new ConcurrentSkipListMap<E,Object>();
addAll(c);
} // 使用ConcurrentSkipListMap初始化map
// 并将有序Set中所有元素放入到map中
public ConcurrentSkipListSet(SortedSet<E> s) {
m = new ConcurrentSkipListMap<E,Object>(s.comparator());
addAll(s);
} // ConcurrentSkipListSet类内部返回子set时使用的
ConcurrentSkipListSet(ConcurrentNavigableMap<E,Object> m) {
this.m = m;
} // 克隆方法
public ConcurrentSkipListSet<E> clone() {
try {
@SuppressWarnings("unchecked")
ConcurrentSkipListSet<E> clone =
(ConcurrentSkipListSet<E>) super.clone();
clone.setMap(new ConcurrentSkipListMap<E,Object>(m));
return clone;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
} /* ---------------- Set operations -------------- */
// 返回元素个数
public int size() {
return m.size();
} // 检查是否为空
public boolean isEmpty() {
return m.isEmpty();
} // 检查是否包含某个元素
public boolean contains(Object o) {
return m.containsKey(o);
} // 添加一个元素
// 调用map的putIfAbsent()方法
public boolean add(E e) {
return m.putIfAbsent(e, Boolean.TRUE) == null;
} // 移除一个元素
public boolean remove(Object o) {
return m.remove(o, Boolean.TRUE);
} // 清空所有元素
public void clear() {
m.clear();
} // 迭代器
public Iterator<E> iterator() {
return m.navigableKeySet().iterator();
} // 降序迭代器
public Iterator<E> descendingIterator() {
return m.descendingKeySet().iterator();
} /* ---------------- AbstractSet Overrides -------------- */
// 比较相等方法
public boolean equals(Object o) {
// Override AbstractSet version to avoid calling size()
if (o == this)
return true;
if (!(o instanceof Set))
return false;
Collection<?> c = (Collection<?>) o;
try {
// 这里是通过两次两层for循环来比较
// 这里是有很大优化空间的,参考上篇文章CopyOnWriteArraySet中的彩蛋
return containsAll(c) && c.containsAll(this);
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
}
} // 移除集合c中所有元素
public boolean removeAll(Collection<?> c) {
// Override AbstractSet version to avoid unnecessary call to size()
boolean modified = false;
for (Object e : c)
if (remove(e))
modified = true;
return modified;
} /* ---------------- Relational operations -------------- */ // 小于e的最大元素
public E lower(E e) {
return m.lowerKey(e);
} // 小于等于e的最大元素
public E floor(E e) {
return m.floorKey(e);
} // 大于等于e的最小元素
public E ceiling(E e) {
return m.ceilingKey(e);
} // 大于e的最小元素
public E higher(E e) {
return m.higherKey(e);
} // 弹出最小的元素
public E pollFirst() {
Map.Entry<E,Object> e = m.pollFirstEntry();
return (e == null) ? null : e.getKey();
} // 弹出最大的元素
public E pollLast() {
Map.Entry<E,Object> e = m.pollLastEntry();
return (e == null) ? null : e.getKey();
} /* ---------------- SortedSet operations -------------- */ // 取比较器
public Comparator<? super E> comparator() {
return m.comparator();
} // 最小的元素
public E first() {
return m.firstKey();
} // 最大的元素
public E last() {
return m.lastKey();
} // 取两个元素之间的子set
public NavigableSet<E> subSet(E fromElement,
boolean fromInclusive,
E toElement,
boolean toInclusive) {
return new ConcurrentSkipListSet<E>
(m.subMap(fromElement, fromInclusive,
toElement, toInclusive));
} // 取头子set
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return new ConcurrentSkipListSet<E>(m.headMap(toElement, inclusive));
} // 取尾子set
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return new ConcurrentSkipListSet<E>(m.tailMap(fromElement, inclusive));
} // 取子set,包含from,不包含to
public NavigableSet<E> subSet(E fromElement, E toElement) {
return subSet(fromElement, true, toElement, false);
} // 取头子set,不包含to
public NavigableSet<E> headSet(E toElement) {
return headSet(toElement, false);
} // 取尾子set,包含from
public NavigableSet<E> tailSet(E fromElement) {
return tailSet(fromElement, true);
} // 降序set
public NavigableSet<E> descendingSet() {
return new ConcurrentSkipListSet<E>(m.descendingMap());
} // 可分割的迭代器
@SuppressWarnings("unchecked")
public Spliterator<E> spliterator() {
if (m instanceof ConcurrentSkipListMap)
return ((ConcurrentSkipListMap<E,?>)m).keySpliterator();
else
return (Spliterator<E>)((ConcurrentSkipListMap.SubMap<E,?>)m).keyIterator();
} // 原子更新map,给clone方法使用
private void setMap(ConcurrentNavigableMap<E,Object> map) {
UNSAFE.putObjectVolatile(this, mapOffset, map);
} // 原子操作相关内容
private static final sun.misc.Unsafe UNSAFE;
private static final long mapOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> k = ConcurrentSkipListSet.class;
mapOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("m"));
} catch (Exception e) {
throw new Error(e);
}
}
}

可以看到,ConcurrentSkipListSet基本上都是使用ConcurrentSkipListMap实现的,虽然取子set部分是使用ConcurrentSkipListMap中的内部类,但是这些内部类其实也是和ConcurrentSkipListMap相关的,它们返回ConcurrentSkipListMap的一部分数据。

另外,这里的equals()方法实现的相当敷衍,有很大的优化空间,作者这样实现,应该也是知道几乎没有人来调用equals()方法吧。

总结

(1)ConcurrentSkipListSet底层是使用ConcurrentNavigableMap实现的;

(2)ConcurrentSkipListSet有序的,基于元素的自然排序或者通过比较器确定的顺序;

(3)ConcurrentSkipListSet是线程安全的;

彩蛋

Set大汇总:

Set 有序性 线程安全 底层实现 关键接口 特点
HashSet HashMap 简单
LinkedHashSet LinkedHashMap 插入顺序
TreeSet NavigableMap NavigableSet 自然顺序
CopyOnWriteArraySet CopyOnWriteArrayList 插入顺序,读写分离
ConcurrentSkipListSet ConcurrentNavigableMap NavigableSet 自然顺序

从中我们可以发现一些规律:

(1)除了HashSet其它Set都是有序的;

(2)实现了NavigableSet或者SortedSet接口的都是自然顺序的;

(3)使用并发安全的集合实现的Set也是并发安全的;

(4)TreeSet虽然不是全部都是使用的TreeMap实现的,但其实都是跟TreeMap相关的(TreeMap的子Map中组合了TreeMap);

(5)ConcurrentSkipListSet虽然不是全部都是使用的ConcurrentSkipListMap实现的,但其实都是跟ConcurrentSkipListMap相关的(ConcurrentSkipListeMap的子Map中组合了ConcurrentSkipListMap);


欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。

死磕 java集合之ConcurrentSkipListSet源码分析——Set大汇总的更多相关文章

  1. 死磕 java集合之DelayQueue源码分析

    问题 (1)DelayQueue是阻塞队列吗? (2)DelayQueue的实现方式? (3)DelayQueue主要用于什么场景? 简介 DelayQueue是java并发包下的延时阻塞队列,常用于 ...

  2. 死磕 java集合之PriorityBlockingQueue源码分析

    问题 (1)PriorityBlockingQueue的实现方式? (2)PriorityBlockingQueue是否需要扩容? (3)PriorityBlockingQueue是怎么控制并发安全的 ...

  3. 死磕 java集合之PriorityQueue源码分析

    问题 (1)什么是优先级队列? (2)怎么实现一个优先级队列? (3)PriorityQueue是线程安全的吗? (4)PriorityQueue就有序的吗? 简介 优先级队列,是0个或多个元素的集合 ...

  4. 死磕 java集合之CopyOnWriteArraySet源码分析——内含巧妙设计

    问题 (1)CopyOnWriteArraySet是用Map实现的吗? (2)CopyOnWriteArraySet是有序的吗? (3)CopyOnWriteArraySet是并发安全的吗? (4)C ...

  5. 死磕 java集合之LinkedHashSet源码分析

    问题 (1)LinkedHashSet的底层使用什么存储元素? (2)LinkedHashSet与HashSet有什么不同? (3)LinkedHashSet是有序的吗? (4)LinkedHashS ...

  6. 死磕 java集合之ConcurrentHashMap源码分析(三)

    本章接着上两章,链接直达: 死磕 java集合之ConcurrentHashMap源码分析(一) 死磕 java集合之ConcurrentHashMap源码分析(二) 删除元素 删除元素跟添加元素一样 ...

  7. 死磕 java集合之ArrayDeque源码分析

    问题 (1)什么是双端队列? (2)ArrayDeque是怎么实现双端队列的? (3)ArrayDeque是线程安全的吗? (4)ArrayDeque是有界的吗? 简介 双端队列是一种特殊的队列,它的 ...

  8. 【死磕 Java 集合】— ConcurrentSkipListMap源码分析

    转自:http://cmsblogs.com/?p=4773 [隐藏目录] 前情提要 简介 存储结构 源码分析 主要内部类 构造方法 添加元素 添加元素举例 删除元素 删除元素举例 查找元素 查找元素 ...

  9. 死磕 java集合之LinkedList源码分析

    问题 (1)LinkedList只是一个List吗? (2)LinkedList还有其它什么特性吗? (3)LinkedList为啥经常拿出来跟ArrayList比较? (4)我为什么把LinkedL ...

随机推荐

  1. CVE-2017-12149 JBOOS AS 6.X 反序列化漏洞利用

    检测目录: 返回500 一般就是存在了. 下载工具: http://scan.javasec.cn/java/JavaDeserH2HC.zip 使用方法: javac -cp .:commons-c ...

  2. java文件传输之文件编码和File类的使用

    ---恢复内容开始--- 我们知道,在用户端和服务端之间存在一个数据传输的问题,例如下载个电影.上传个照片.发一条讯息.在这里我们 就说一下文件的传输. 1.文件编码 相信大家小时候玩过积木(没玩过也 ...

  3. 使用WSL连接Docker for Windows

    在Windows下安装Docker for Windows Cotana搜索功能,打开Windows的Hype-v功能(注:会影响Virtualbox和Vmware的使用)并重启电脑. 从Docker ...

  4. (ospf、rip、isis、EIGRP)常见的动态路由协议简介

    路由器要转发数据必须先配置路由数据,通常根据网络规模的大小可设置静态路由或设置动态路由.静态路由配置方便,对系统要求低,适用于拓扑结构简单并且稳定的小型网络.缺点是不能自动适应网络拓扑的变化,需要人工 ...

  5. 团队项目第二阶段个人进展——Day9

    一.昨天工作总结 冲刺第九天,完成图片的优化,与队友一起讨论如何合并并优化 二.遇到的问题 无 三.今日工作规划 合并后优化

  6. java语言浅显理解

    从厉害的c语言.到经久不衰的java语言.到不太火的安卓和IOS,到当下流行的python,这些都是软件开发中的一员. 之前在传智播客上的免费视频资源上,听了老师对java语言的介绍,感觉挺好了.今天 ...

  7. The JRE_HOME environment variable is not defined correctly

    启动Tomcat后startup.bat脚本调用了catalina.bat,然后catalina.bat调用了setclasspath.bat,setclasspath.bat的头部定义了JAVA_H ...

  8. c语言,数据结构,链表的一些操作总结

    下面是自己的一些学习操作以及总结,能用我会很开心,有不足之处,欢迎大家提出宝贵的意见! c语言链表是一种基本的数据结构,与顺序表一样属于线性表,但是顺序表在内存中的存储单元是连续的,这样就对内存的要求 ...

  9. java导入excel时处理日期格式(已验证ok)

    在Excel中的日期格式,比如2009-12-24将其转化为数字格式时变成了40171,在用java处理的时候,读取的也将是40171.如果使用POI处理Excel中的日期类型的单元格时,如果仅仅是判 ...

  10. Java NIO Buffer缓冲区

    原文链接:http://tutorials.jenkov.com/java-nio/buffers.html Java NIO Buffers用于和NIO Channel交互.正如你已经知道的,我们从 ...