"《算法导论》之‘图’":单点最短路径(有向图)
也许最直观的图处理问题就是你常常需要使用某种地图软件或者导航系统来获取从一个地方到另一个地方的路径。我们立即可以得到与之对应的图模型:顶点对应交叉路口,边对应公路,边的权重对应该路段的成本(时间或距离)。如果有单行线,那就意味着还需要考虑加权有向图。在这个模型中,问题很容易就可以被归纳为:
找到一个顶点到达另一个顶点的成本最小的路径。
前言
单点最短路径指的就是从源点S到给定的目的顶点V的总权重最小的路径。
从源点S出发,到所有可达的顶点的路径构成了一棵最短路径树(Shortest Path Tree, SPT)。下边显示了从不同源点出发所构成的最短路径树:

本文用到的加权有向图如下:

Dijkstra
边的松驰
下图展示了两个边的松驰的操作。在第一个例子中,因为distTo[v] + weght(v, w) > distTo[w],所以认为边v->w应该失效;在第二个例子中,distTo[v] + weght(v, w) < distTo[w],所以认识从其他顶点到w比从v到w的路径要长,原其他顶点到w的路径应该失效,v->w有效。
通过这两个例子,我们知道,松驰操作的思想跟Prim算法的思想是很相似的。

Java代码:
private void relax(EdgeWeightedDigraph G, int v)
{
for (DirectedEdge e : G.adj(v))
{
int w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
}
}
}
Dijkstra算法
在《算法》中给出的Java代码如下:
public class DijkstraSP
{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;
public DijkstraSP(EdgeWeightedDigraph G, int s)
{
edgeTo = new DirectedEdge[G.V()];
distTo = new double[G.V()];
pq = new IndexMinPQ<Double>(G.V());
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
pq.insert(s, 0.0);
while (!pq.isEmpty())
relax(G, pq.delMin())
}
private void relax(EdgeWeightedDigraph G, int v)
{
for (DirectedEdge e : G.adj(v))
{
int w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
if (pq.contains(w)) pq.change(w, distTo[w]);
else pq.insert(w, distTo[w]);
}
}
}
public double distTo(int v) // standard client query methods
public boolean hasPathTo(int v) // for SPT implementatations
public Iterable<Edge> pathTo(int v) // (See page 649.)
}
Dijkstra算法的轨迹如下:

具体代码见Github.
"《算法导论》之‘图’":单点最短路径(有向图)的更多相关文章
- 【算法导论】单源最短路径之Bellman-Ford算法
单源最短路径指的是从一个顶点到其它顶点的具有最小权值的路径.我们之前提到的广度优先搜索算法就是一种无权图上执行的最短路径算法,即在所有的边都具有单位权值的图的一种算法.单源最短路径算法可以解决图中任意 ...
- 【算法导论】单源最短路径之Dijkstra算法
Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到 ...
- 【算法导论】图的广度优先搜索遍历(BFS)
图的存储方法:邻接矩阵.邻接表 例如:有一个图如下所示(该图也作为程序的实例): 则上图用邻接矩阵可以表示为: 用邻接表可以表示如下: 邻接矩阵可以很容易的用二维数组表示,下面主要看看怎样构成邻接表: ...
- 【算法导论】图的深度优先搜索遍历(DFS)
关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS). 深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点, ...
- "《算法导论》之‘图’":深度优先搜索、宽度优先搜索(无向图、有向图)
本文兼参考自<算法导论>及<算法>. 以前一直不能够理解深度优先搜索和广度优先搜索,总是很怕去碰它们,但经过阅读上边提到的两本书,豁然开朗,马上就能理解得更进一步. 下文将会用 ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- 算法导论——lec 10 图的基本算法及应用
搜索一个图是有序地沿着图的边訪问全部定点, 图的搜索算法能够使我们发现非常多图的结构信息, 图的搜索技术是图算法邻域的核心. 一. 图的两种计算机表示 1. 邻接表: 这样的方法表示稀疏图比較简洁紧凑 ...
- 图的最短路径---迪杰斯特拉(Dijkstra)算法浅析
什么是最短路径 在网图和非网图中,最短路径的含义是不一样的.对于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径. 对于网图,最短路径就是指两顶点之间经过的边上权值之和最 ...
- C++编程练习(11)----“图的最短路径问题“(Dijkstra算法、Floyd算法)
1.Dijkstra算法 求一个顶点到其它所有顶点的最短路径,是一种按路径长度递增的次序产生最短路径的算法. 算法思想: 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的 ...
随机推荐
- SpringMVC实现用户登录实例
今天分享一下SpringMVC的一个登陆小案例 准备工作 创建一个Dynamic Web Project(本人是Eclipse) 添加相关的jar包,构建路径 创建springMVC-servlet. ...
- 高仿腾讯QQ即时通讯IM项目
前言:其实这个项目早就开发完成了,在本人的github上,本来没打算写成博客的形式,因为一个项目要写出来要花很久,但是最近看到很多 人在我的github上download后随意发布到网上,本来上传到g ...
- iOS中 最新微信支付/最全的微信支付教程详解 韩俊强的博客
每日更新关注:http://weibo.com/hanjunqiang 新浪微博! 亲们, 首先让我们来看一下微信支付的流程吧. 1. 注册微信开放平台,创建应用获取appid,appSecret, ...
- 09 ExpanableListView 的代码例子
<span style="font-size:18px;">package com.qf.day09_expandablelistview03; import andr ...
- 07 总结ProgressDialog 异步任务
1,ProgressDialog > //使用对象 设置标题 progressDialog.setTitle("标题"); ...
- Xcode7 真机免证书调试Cocos2D游戏
大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请多提意见,如果觉得不错请多多支持点赞.谢谢! hopy ;) 经过一番实验,现在终于可以在Xcode7上免证书真机调试了: ...
- SpringMVC源码分析--容器初始化(四)FrameworkServlet
在上一篇博客SpringMVC源码分析--容器初始化(三)HttpServletBean我们介绍了HttpServletBean的init函数,其主要作用是初始化了一下SpringMVC配置文件的地址 ...
- Java-IO之BufferedWriter(字符缓冲输出流)
BufferedWriter是字符缓冲输出流,继承于Writer,作用是为其他字符输出流添加一些缓冲功能. BufferedWriter主要的函数列表: BufferedWriter(Writer o ...
- (七十四)iOS8之前使socket可以后台运行的方法
对于使用socket通信的应用程序,常常希望App位于后台时仍然可以进行网络通信,这在iOS8和以后的版本是被默认允许的,socket可以直接在后台运行,而对于iOS8之前的版本就不行,需要进行两步设 ...
- Android初级教程三个Dialog对话框小案例
这里把三个对话框形式写在一个项目程序里面,用三个按钮控制显示什么样式的对话框. 先看布局文件代码: <LinearLayout xmlns:android="http://schema ...