海量数据挖掘MMDS week2: Nearest-Neighbor Learning最近邻学习
http://blog.csdn.net/pipisorry/article/details/48894963
海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之Nearest-Neighbor Learning,KNN最近邻学习
{The module is about large scale machine learning.}
Supervised Learning监督学习
Note: y有多种不同的形式,对应不同的问题。如为实数时,属于回归问题。
下面我们主要讲解分类问题
大规模机器学习方法
how do we efficiently train?Or build a model based on the based on the data?
So in a sense the main question is how do I find this function f.That takes the input features and predicts the class variable.
Instance based learning基于实例的学习
最近邻分类器Nearest nerghbor
最近邻分类器要考虑的问题
Note: 最后一个要考虑的问题就是:How to take all these nearest neighbors and combine their values into a single point that I can use as prediction.
1-Nearest Nerghbor
1-Nearest nerghbor的重大缺陷:预测值附近变化大,用一个值来预测不准确。the method is suffering from It is making lots of very spiky, or sharp decisions, because we are only looking at the one nearest neighbor.
K-Nearest Nerghbor
Note: f(x) is much smoother than what is was before.
Kernel Regression核回归
寻找最近邻的方法
一般扫描数据点方法的时间复杂度:线性时间
solution would require a linear pass over the data, so it would take linear time.
使用LSH的时间复杂度:常数时间(可用于大规模数据)
using locality sensitive hashing, we could find, nearest neighbors in near constant time.So that would be a good way how to really make nearest neighbor classifiers scale to large scale data.
具体是怎么实现的?
from:http://blog.csdn.net/pipisorry/article/details/48894963
ref:论文:GPU上的K近邻并行暴力搜索Brute-Force k-Nearest Neighbors Search on the GPU
海量数据挖掘MMDS week2: Nearest-Neighbor Learning最近邻学习的更多相关文章
- 海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensitive Hashing, LSH
http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:非hash方法
http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:基于hash的方法
http://blog.csdn.net/pipisorry/article/details/48901217 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: Association Rules关联规则与频繁项集挖掘
http://blog.csdn.net/pipisorry/article/details/48894977 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week2: LSH的距离度量方法
http://blog.csdn.net/pipisorry/article/details/48882167 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week7: 局部敏感哈希LSH(进阶)
http://blog.csdn.net/pipisorry/article/details/49686913 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week3:社交网络之社区检测:高级技巧
http://blog.csdn.net/pipisorry/article/details/49052255 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week6: 支持向量机Support-Vector Machines,SVM
http://blog.csdn.net/pipisorry/article/details/49445387 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week5: 聚类clustering
http://blog.csdn.net/pipisorry/article/details/49427989 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
随机推荐
- 常用java开发文档链接
使用java开源工具httpClient及jsoup抓取解析网页数据 : https://blog.csdn.net/lovoo/article/details/52674712 jsoup Cook ...
- jmeter分布式测试远程连接失败
jmeter分布式部署其实很简单.但今天测试的时候发现了一个坑,远程连接一直失败. 原因:服务器上部署了slave,而这台服务器上有多个网卡.举个例子:ip分别为:192.168.100.6,10.1 ...
- Java 程序运行过程中的内存分析
作为 java 程序员,都应该知道 Java 程序运行在 JVM(Java Virtual Machine,Java 虚拟机)上,可以把 JVM 理解成 Java 程序和操作系统之间的桥梁,JVM 实 ...
- FJUT寒假第一周作业浮点数查寻题解
二分强化——浮点数序列查询 TimeLimit:4000MS MemoryLimit:128MB 64-bit integer IO format:%I64d Problem Description ...
- jQuery 效果 – 动画
在使用jQuery动画时,你可能想要实现更加丰富的效果,那么你可以通过使用 jQuery animate() 方法自定义动画来达到目的,具体的使用方法如下文所述. jQuery animate() 方 ...
- MongoDB 自动增长
MongoDB 没有像 SQL 一样有自动增长的功能, MongoDB 的 _id 是系统自动生成的12字节唯一标识. 但在某些情况下,我们可能需要实现 ObjectId 自动增长功能. 由于 Mon ...
- Java程序员的Golang入门指南(上)
Java程序员的Golang入门指南 1.序言 Golang作为一门出身名门望族的编程语言新星,像豆瓣的Redis平台Codis.类Evernote的云笔记leanote等. 1.1 为什么要学习 如 ...
- ROSCon 2016视频和幻灯片发布 ROS机器人操作系统重要参考资料
ROSCon 2016视频和幻灯片发布 By Tully Foote on 十月19,2016 7:28 AM 全部PPT下载地址:http://pan.baidu.com/s/1gf2sn2F RO ...
- Windows 8 Cython 的配置(解决Unable to find vcvarsall.bat问题)
关键是安装之前配置编译器. 1.下载MinGW 编译器 http://www.mingw.org/download.shtml 2.把编译器路径(例如C:\Program Files (x86)\Co ...
- FORM打开网页链接
DECLARE l_server_url VARCHAR2(100); l_parameters VARCHAR2(200); BEGIN fnd_profile.get('APPS_WEB_A ...