重温了这道cdq+FFT
讲白了就是不断对 dp[l~mid] 和 sh[1~r] 进行fft 得到 dp[mid+1~r]

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e5+5;
const int MOD = 313; int N;
int sh[MAXN], dp[MAXN];
int ans;
/****************FFT*************/
int A[MAXN<<2], B[MAXN<<2], C[MAXN<<2];
struct FFTSOLVE {
int pos[MAXN<<2];
struct comp {
double r , i ;
comp ( double _r = 0 , double _i = 0 ) : r ( _r ) , i ( _i ) {}
comp operator + ( const comp& x ) {
return comp ( r + x.r , i + x.i ) ;
}
comp operator - ( const comp& x ) {
return comp ( r - x.r , i - x.i ) ;
}
comp operator * ( const comp& x ) {
return comp ( r * x.r - i * x.i , i * x.r + r * x.i ) ;
}
comp conj () {
return comp ( r , -i ) ;
}
} A[MAXN<<2] , B[MAXN<<2] ;
const double pi = acos ( -1.0 ) ;
void FFT ( comp a[] , int n , int t ) {
for ( int i = 1 ; i < n ; ++ i ) if ( pos[i] > i ) swap ( a[i] , a[pos[i]] ) ;
for ( int d = 0 ; ( 1 << d ) < n ; ++ d ) {
int m = 1 << d , m2 = m << 1 ;
double o = pi * 2 / m2 * t ;
comp _w ( cos ( o ) , sin ( o ) ) ;
for ( int i = 0 ; i < n ; i += m2 ) {
comp w ( 1 , 0 ) ;
for ( int j = 0 ; j < m ; ++ j ) {
comp& A = a[i + j + m] , &B = a[i + j] , t = w * A ;
A = B - t ;
B = B + t ;
w = w * _w ;
}
}
}
if ( t == -1 ) for ( int i = 0 ; i < n ; ++ i ) a[i].r /= n ;
}
void mul ( int *a , int *b , int *c ,int k) {
int i , j ;
for ( i = 0 ; i < k ; ++ i ) A[i] = comp ( a[i] , b[i] ) ;
j = __builtin_ctz ( k ) - 1 ;
for ( int i = 0 ; i < k ; ++ i ) {
pos[i] = pos[i >> 1] >> 1 | ( ( i & 1 ) << j ) ;
}
FFT ( A , k , 1 ) ;
for ( int i = 0 ; i < k ; ++ i ) {
j = ( k - i ) & ( k - 1 ) ;
B[i] = ( A[i] * A[i] - ( A[j] * A[j] ).conj () ) * comp ( 0 , -0.25 ) ;
}
FFT ( B , k , -1 ) ;
for ( int i = 0 ; i < k ; ++ i ) {
c[i] = ( long long ) ( B[i].r + 0.5 );
}
}
}boy;
void cdq(int l,int r) {
if(l == r) {
dp[l] = (dp[l] + sh[l]) % MOD;
return;
}
int mid = (l+r)>>1;
cdq(l,mid); int l1 = 0, l2 = 0;
for(int i = l; i <= mid; ++i) A[l1++] = dp[i];
for(int i = 1; i <= N; ++i) {
if(i+l > r) break;
B[l2++] = sh[i];
}
int len = 1;
while(len < l1*2 || len < l2*2) len <<= 1;
for(int i = l1; i < len; ++i) A[i]=0;
for(int i = l2; i < len; ++i) B[i]=0;
boy.mul(A,B,C,len);
for(int i = mid+1; i <= r; ++i) {
dp[i] = (dp[i]+C[i-l-1]) %MOD;
}
cdq(mid+1,r);
}
int main(){
while(~scanf("%d",&N)) {
memset(dp,0,sizeof(dp));
if(N == 0) break;
for(int i = 1; i <= N; ++i) {
scanf("%d",&sh[i]); sh[i] %= MOD;
} cdq(1,N);
printf("%d\n",dp[N]);
}
return 0;
}

hdu5730 Shell Necklace的更多相关文章

  1. HDU5730 Shell Necklace(DP + CDQ分治 + FFT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5730 Description Perhaps the sea‘s definition of ...

  2. hdu5730 Shell Necklace 【分治fft】

    题目 简述: 有一段长度为n的贝壳,将其划分为若干段,给出划分为每种长度的方案数,问有多少种划分方案 题解 设\(f[i]\)表示长度为\(i\)时的方案数 不难得dp方程: \[f[i] = \su ...

  3. 【HDU5730】 Shell Necklace

    HDU5730 Shell Necklace 题目大意 已知连续i(1<=i<=n)个贝壳组合成一段项链的方案数a[i],求组合成包含n个贝壳的项链的总方案数. Solution cdq分 ...

  4. 【HDU5730】Shell Necklace(多项式运算,分治FFT)

    [HDU5730]Shell Necklace(多项式运算,分治FFT) 题面 Vjudge 翻译: 有一个长度为\(n\)的序列 已知给连续的长度为\(i\)的序列装饰的方案数为\(a[i]\) 求 ...

  5. 2016 Multi-University Training Contest 1 H.Shell Necklace

    Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  7. hdu Shell Necklace 5730 分治FFT

    Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell neckl ...

  8. HDU - 5730 :Shell Necklace(CDQ分治+FFT)

    Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n b ...

  9. HDU Shell Necklace CDQ分治+FFT

    Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in ...

随机推荐

  1. 洛谷 [p2294] [HNOI2005] 狡猾的商人

    差分约束做法 又是一道转换成前缀和的差分约束题,已知从s月到t月的收入w,设数组pre[i]代表从开始到第i个月的总收入 构造差分不等式 $ pre[s-1]-pre[t]==w $ 为了满足松弛操作 ...

  2. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  3. Oleans集群之Consul再解释

    Oleans集群之Consul再解释 这是Orleans系列文章中的一篇.首篇文章在此 由于上周发文章的时候,我正要打算出门,所以就把写好的全部发出去了,有点仓促,虽然写了主线,但是这里还是需要再次解 ...

  4. 【Java】多线程初探

     参考书籍:<Java核心技术 卷Ⅰ >   Java的线程状态   从操作系统的角度看,线程有5种状态:创建, 就绪, 运行, 阻塞, 终止(结束).如下图所示     而Java定义的 ...

  5. Linux用于嵌入式

    步骤1:Linux工具和项目布局 每个嵌入式软件设计都从选择合适的工具开始. 工具链是一组连接(或链接)在一起的软件开发工具,它包含诸如GNU编译器集合(GCC).binutils(一组包括连接器.汇 ...

  6. Nginx Rewrite规则详解

    Rewrite规则含义就是某个URL重写成特定的URL,从某种意义上说为了美观或者对搜索引擎友好,提高收录量及排名等. Rewrite规则的最后一项参数为flag标记,支持的flag标记主要有以下几种 ...

  7. linux server 常见参数修改

    文件描述符(file descriptors) /etc/security/limits.conf 这里是当前用户允许打开的文件描述符限制,可以用ulimit -n查看. 修改成如下配置:   * h ...

  8. mysql 查找某个表在哪个库

    SELECT table_schema FROM information_schema.TABLES WHERE table_name = '表名';

  9. [求助][SPOJ MARIOGAM]-高斯消元(内含标程,数据等)

    小蒟蒻开始做概率的题之后,遇到了这道题,然而,他发现自己的程序调试了无数次也无法通过,系统总是返回令人伤心的WA, 于是,他决定把这一天半的时间收集到的资料放在网上, 寻求大家的帮助, 也可以节省后来 ...

  10. OpenCV角点检测goodFeaturesToTrack()源代码分析

    上面一篇博客分析了HARRIS和ShiTomasi角点检测的源代码.而为了提取更准确的角点,OpenCV中提供了goodFeaturesToTrack()这个API函数,来获取更加准确的角点位置.这篇 ...