CNN实现

概述

我在qwe中有两种,第一种是按照Ng课程中的写法,多层循环嵌套得到每次的“小方格”,然后WX+b,这样的做法是最简单,直观。但是效率极其慢。基本跑个10张以内图片都会卡的要死。

第二种方法是使用img2col,将其转换为对应的矩阵,然后直接做一次矩阵乘法运算。

先看第一种

def forward(self, X):
m, n_H_prev, n_W_prev, n_C_prev = X.shape
(f, f, n_C_prev, n_C) = self.W.shape
n_H = int((n_H_prev - f + 2 * self.pad) / self.stride) + 1
n_W = int((n_W_prev - f + 2 * self.pad) / self.stride) + 1
n_H, n_W, n_C = self.output_size Z = np.zeros((m, n_H, n_W, n_C))
X_pad = zero_pad(X, self.pad)
for i in range(m):
for h in range(n_H):
for w in range(n_W):
for c in range(n_C):
vert_start = h * self.stride
vert_end = vert_start + f
horiz_start = w * self.stride
horiz_end = horiz_start + f
A_slice_prev =X_pad[i,vert_start:vert_end, horiz_start:horiz_end, :]
Z[i,h,w,c] = conv_single_step(A_slice_prev, self.W[...,c], self.b[...,c]) def conv_single_step(X, W, b):
# 对一个裁剪图像进行卷积
# X.shape = f, f, prev_channel_size
return np.sum(np.multiply(X, W) + b)

对于m,n_H,n_W,n_C循环就是取得裁剪小方块,可以看到这里的计算复杂度m * n_H * n_W * n_C * (f*f的矩阵计算)

第二种方法,先转换成大矩阵,再进行一次矩阵运算,相当于节省了多次小矩阵运算时间,这还是很可观的,能查个几十倍的速度。

img2col原理很简单,详情可参考caffe im2col

就是循环将每一部分都拉长成一维矩阵拼凑起来。

对于CNN来说,H就是要计算方块的个数即m(样本数) n_H(最终生成图像行数)n_W(最终生成图像列数),W就是f(核kernel长)f(核宽)*(输入样本通道输)

然后还要把参数矩阵W也拉成这个样子,H就是f(核长)f(核宽)(输入样本通道输),W列数就是核数kernel_size

如下图



def img2col(X, pad, stride, f):
pass
ff = f * f
m, n_H_prev, n_W_prev, n_C_prev= X.shape
n_H = int((n_H_prev - f + 2 * pad) / stride) + 1
n_W = int((n_W_prev - f + 2 * pad) / stride) + 1
Z = np.zeros((m * n_H * n_W, f * f * n_C_prev))
X_pad = np.pad(X, ((0, 0), (pad, pad), (pad, pad), (0, 0)), 'constant', constant_values=0)
row = -1 for i in range(m):
for h in range(n_H):
for w in range(n_W):
row += 1
vert_start = h * stride
horiz_start = w * stride
for col in range(f * f * n_C_prev):
t = col // n_C_prev
hh = t // f
ww = t % f
cc = col % n_C_prev
Z[row, col] = X_pad[i, vert_start + hh, horiz_start + ww, cc] def speed_forward(model, X):
W = model.W
b = model.b
stride = model.stride
pad = model.pad
(n_C_prev, f, f, n_C) = W.shape
m, n_H_prev, n_W_prev, n_C_prev = X.shape n_H = int((n_H_prev - f + 2 * pad) / stride) + 1
n_W = int((n_W_prev - f + 2 * pad) / stride) + 1 # WW = W.swapaxes(2,1)
# WW = WW.swapaxes(1,0) XX = img2col(X, pad, stride, f)
# WW = WW.reshape(f*f*n_C_prev, n_C)
WW = W.reshape(f*f*n_C_prev, n_C)
model.XX = XX
model.WW = WW Z = np.dot(XX, WW) + b
return Z.reshape(m, n_H, n_W, n_C)

这种耗时操作,最好使用Cython扩展来写,不然速度还是不够理想。Cython扩展代码code

反向传播同理,具体代码参考

github

qwe框架- CNN 实现的更多相关文章

  1. 深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)

    1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说 ...

  2. 深蓝色 --ppt

    Deep Learning of Binary Hash Codes for Fast Image Retrieval [Paper] [Code-Caffe] 1. 摘要 针对图像检索问题,提出简单 ...

  3. [基础]Deep Learning的基础概念

    目录 DNN CNN DNN VS CNN Example 卷积的好处why convolution? DCNN 卷积核移动的步长 stride 激活函数 active function 通道 cha ...

  4. qwe 简易深度框架

    qwe github地址 简介 简单的深度框架,参考Ng的深度学习课程作业,使用了keras的API设计. 方便了解网络具体实现,避免深陷于成熟框架的细节和一些晦涩的优化代码. 网络层实现了Dense ...

  5. 【深度学习系列3】 Mariana CNN并行框架与图像识别

    [深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框 ...

  6. 卷积神经网络CNN与深度学习常用框架的介绍与使用

    一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器 ...

  7. 我所写的CNN框架 VS caffe

    我所写的CNN框架 VS caffe 一个月前.自己模仿caffe实现了一个卷积神经网络的框架. 同样点 1无缝支持CPU和GPU模式,GPU模式使用cuda实现. 不同点 1我的CNN不依赖与不论什 ...

  8. ubuntu之路——day19.2 开源框架与迁移、CNN中的数据扩充

    开源框架与迁移 上面介绍了一些已经取得很好成绩的CNN框架,我们可以直接从GitHub上下载这些神经网络的结构和已经在ImageNet等数据集上训练好的权重超参数. 在应用于我们自己的数据时. 1.如 ...

  9. CNN基础框架简介

    卷积神经网络简介 卷积神经网络是多层感知机的变种,由生物学家休博尔和维瑟尔在早期关于猫视觉皮层的研究发展而来.视觉皮层的细胞存在一个复杂的构造,这些细胞对视觉输入空间的子区域非常敏感,我们称之为感受野 ...

随机推荐

  1. Mybatis异常There is no getter for property named 'XXX' in 'class com.xxx.xxx.UserAccountDTO

    mybatis报错异常信息如下: 解决: 在接口中加上注解:@Param("userAccountDTO"),如图

  2. Linux根据UUID自动挂载磁盘分区

    一般服务器都有多个硬盘分区,在重启后,这些分区的逻辑位置加载时可能会发生变动,如果使用传统的设备名称(例如:/dev/sda)方式挂载磁盘,就可能因为磁盘顺序变化而造成混乱. Linux环境中每个Bl ...

  3. Java:对象的强、软、弱和虚引用[转]

    原文链接:http://zhangjunhd.blog.51cto.com/113473/53092/ 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法 ...

  4. C++/C高质量编程指南-笔记

    复习: C/C++高质量编程指南: [规则1-2-1]为了防止头文件被重复引用,应当用ifndef/define/endif结构产生预处理块. [规则1-2-2]用 #include <file ...

  5. BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solve ...

  6. Python tutorial阅读之函数的定义与使用

    函数的定义 Python 使用关键字def定义函数,格式与C语言类似,但是没有返回类型,参数也不需要设置类型. def add(a, b): """这是函数的文档字符串& ...

  7. MySQL学习记录(不断更新)

    MySQL设置数据集为UTF8仍无法输入中文的解决办法: 我们的机器默认为gbk,因此可在进入数据库之前,使用以下这条语句将默认编码改为gbk,注意没有单引号,也不要用分号. mysql -uroot ...

  8. 用Android属性动画实现和演示迪士尼动画基本原则

    本文将介绍在Android平台上实现和演示迪士尼动画基本准则. 项目开源,GitHub: https://github.com/vhow/animation 说明: 演示动画原则的想法源自 Anima ...

  9. Nginx防盗链配置案例配置,Nginx的知识分享

    防盗链的含义:网站内容不在自己服务器上,而通过技术手段,绕过别人放广告有利益的最终页,直接在自己的有广告有利益的页面上向最终用户提供此内容. 常常是一些名不见经传的小网站来盗取一些有实力的大网站的地址 ...

  10. 想玩 BGP 路由器么?用 CentOS 做一个

    在之前的教程中,我对如何简单地使用Quagga把CentOS系统变成一个不折不扣地OSPF路由器做了一些介绍.Quagga是一个开源路由软件套件.在这个教程中,我将会重点讲讲如何把一个Linux系统变 ...