决策树-C4.5算法(三)
在上述两篇的文章中主要讲述了决策树的基础,但是在实际的应用中经常用到C4.5算法,C4.5算法是以ID3算法为基础,他在ID3算法上做了如下的改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足,公式为GainRatio(A);
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理;
4) 能够对不完整数据进行处理。
C4.5算法与其它分类算法如统计方法、神经网络等比较起来有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
1.信息增益率
之所以是用信息增益率起原因是信息增益在选择属性时会偏向多属性这个缺点:
信息增益率定义如下:
其中Grain(S,A) 与ID3的信息增益相同,而分裂信息SplitInfo(S,A)代表了按照属性A分裂样本集的广度与均匀性。
其中S1到Sc是C个不同值得属性A分割中S而形成的C个样本子集,如果按照属性A把S集(30个用列)分成10与20个用列集合,则SplitInfo(S,A)= -1/3*log(1/3)-2/3log(2/3)
2.以二值离散的方式处理连续型的数据
所谓二值离散:是指对连续属性进行排序,得到多个候选阈值,选取产生最大信息增益的阈值作为分裂阈值
3.C4.5采用的改进EBP剪枝算法
4.处理缺失值
在ID3算法中不能处理缺失值,而本算法可却可以,处理缺失值得方法如下:
以上是C4.5 算法的相对于ID3算法的改进。
其中在C4.5之后又发展了C5.0算法,引入了Boost框架。具体可以看相关的附件。
决策树-C4.5算法(三)的更多相关文章
- 02-22 决策树C4.5算法
目录 决策树C4.5算法 一.决策树C4.5算法学习目标 二.决策树C4.5算法详解 2.1 连续特征值离散化 2.2 信息增益比 2.3 剪枝 2.4 特征值加权 三.决策树C4.5算法流程 3.1 ...
- Python实现决策树C4.5算法
为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益. 之所以这样做是因为信息增益倾向于选 ...
- 决策树 -- C4.5算法
C4.5是另一个分类决策树算法,是基于ID3算法的改进,改进点如下: 1.分离信息 解释:数据集通过条件属性A的分离信息,其实和ID3中的熵: 2.信息增益率 解释:Gain(A)为获的A ...
- python实现决策树C4.5算法(在ID3基础上改进)
一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作 ...
- 决策树C4.5算法——计算步骤示例
使用决策树算法手动计算GOLF数据集 步骤: 1.通过信息增益率筛选分支. (1)共有4个自变量,分别计算每一个自变量的信息增益率. 首先计算outlook的信息增益.outlook的信息增益Gain ...
- 决策树(C4.5)原理
决策树c4.5算法是在决策树ID3上面演变而来. 在ID3中: 信息增益 按属性A划分数据集S的信息增益Gain(S,A)为样本集S的熵减去按属性A划分S后的样本子集的熵,即 在此基础上,C4.5计算 ...
- 《机器学习实战》学习笔记第三章 —— 决策树之ID3、C4.5算法
主要内容: 一.决策树模型 二.信息与熵 三.信息增益与ID3算法 四.信息增益比与C4.5算法 五.决策树的剪枝 一.决策树模型 1.所谓决策树,就是根据实例的特征对实例进行划分的树形结构.其中有两 ...
- 机器学习总结(八)决策树ID3,C4.5算法,CART算法
本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点. 决策树:是一种基本的分类和回归方法.在分类问题中,是基于特征对实例进行分类.既可以认为是if-then ...
- 决策树之C4.5算法学习
决策树<Decision Tree>是一种预測模型,它由决策节点,分支和叶节点三个部分组成. 决策节点代表一个样本測试,通常代表待分类样本的某个属性,在该属性上的不同測试结果代表一个分支: ...
随机推荐
- OkHttp实现全局过期token自动刷新
#遇到问题: 当前开发的 App 遇到一个问题: 当请求某个接口时,由于 token 已经失效,所以接口会报错.但是产品经理希望 app 能够马上刷新 token ,然后重复请求刚才那个接口,这个过程 ...
- JDBC (五)
1 使用dbutils进行一对多.多对多的开发 1.1 准备 mysql驱动的pom.xml <!-- https://mvnrepository.com/artifact/mysql/mysq ...
- windows下安装Python2和Python3共存
一.Python安装 1.下载安装包 https://www.python.org/ftp/python/2.7.14/python-2.7.14.amd64.msi # 2.7安装包 https:/ ...
- Python学习--使用dlib、opencv进行人脸检测标注
参考自https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/ 在原有基础上有一部分的修改(image ...
- ffmpeg命令行循环推流
用ffmpeg循环推一个文件到rtmp服务器.一般都是建议用-stream_loop选项.如: ffmpeg -threads -re -fflags +genpts -stream_loop - - ...
- Java中的递归调用
Java中不合理的使用递归调用,可能会导致栈内存溢出,这点是需要注意的. java将为每个线程维护一个栈,栈里将为每个方法保存一个栈帧,栈帧代表了一个方法的运行状态. 也就是我们常说的方法栈.最后一个 ...
- verilog实验3:AD转换后串口输出到PC端
一.实验任务 通过tcl549AD转换芯片将模拟电压信号转换为数字信号,并通过串口显示到电脑上.此AD转换芯片为串行转换芯片,且转换速率要和串口选择的速率匹配.等待串口发送完后,再进行下一次AD转换. ...
- ThinkPHP删除栏目(单)
当我们做一些网站项目的时候,都会遇到这样一类问题,删除一个栏目,而这个栏目又不是最底层栏目,也就是说,被删除的栏目拥有子栏目,这时,我们执行删除该栏目的命令,就需要将该栏目及其子栏目一并删除,因为我们 ...
- Python中的浅拷贝与深拷贝
编者注:本文主要参考了<Python核心编程(第二版)> 以下都是参考资料后,我自己的理解,如有错误希望大家不吝赐教. 大家有没有遇到这样一种情况,对象赋值后,对其中一个变量进行修改,另外 ...
- 阿里云学习之IOT物联网套件(客户端与服务端的后台数据传输)
设备端代码(mqttClient):https://help.aliyun.com/document_detail/42648.html?spm=5176.doc30579.6.569.ZEgA1g ...