在上述两篇的文章中主要讲述了决策树的基础,但是在实际的应用中经常用到C4.5算法,C4.5算法是以ID3算法为基础,他在ID3算法上做了如下的改进:

 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足,公式为GainRatio(A);

  2) 在树构造过程中进行剪枝;

  3) 能够完成对连续属性的离散化处理;

  4) 能够对不完整数据进行处理。

  C4.5算法与其它分类算法如统计方法、神经网络等比较起来有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。


1.信息增益率

之所以是用信息增益率起原因是信息增益在选择属性时会偏向多属性这个缺点:

信息增益率定义如下:


其中Grain(S,A) 与ID3的信息增益相同,而分裂信息SplitInfo(S,A)代表了按照属性A分裂样本集的广度与均匀性。

其中S1到Sc是C个不同值得属性A分割中S而形成的C个样本子集,如果按照属性A把S集(30个用列)分成10与20个用列集合,则SplitInfo(S,A)= -1/3*log(1/3)-2/3log(2/3)

2.以二值离散的方式处理连续型的数据

所谓二值离散:是指对连续属性进行排序,得到多个候选阈值,选取产生最大信息增益的阈值作为分裂阈值

3.C4.5采用的改进EBP剪枝算法

4.处理缺失值

在ID3算法中不能处理缺失值,而本算法可却可以,处理缺失值得方法如下:

以上是C4.5 算法的相对于ID3算法的改进。

其中在C4.5之后又发展了C5.0算法,引入了Boost框架。具体可以看相关的附件。

决策树-C4.5算法(三)的更多相关文章

  1. 02-22 决策树C4.5算法

    目录 决策树C4.5算法 一.决策树C4.5算法学习目标 二.决策树C4.5算法详解 2.1 连续特征值离散化 2.2 信息增益比 2.3 剪枝 2.4 特征值加权 三.决策树C4.5算法流程 3.1 ...

  2. Python实现决策树C4.5算法

    为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益. 之所以这样做是因为信息增益倾向于选 ...

  3. 决策树 -- C4.5算法

    C4.5是另一个分类决策树算法,是基于ID3算法的改进,改进点如下: 1.分离信息   解释:数据集通过条件属性A的分离信息,其实和ID3中的熵:   2.信息增益率   解释:Gain(A)为获的A ...

  4. python实现决策树C4.5算法(在ID3基础上改进)

    一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作 ...

  5. 决策树C4.5算法——计算步骤示例

    使用决策树算法手动计算GOLF数据集 步骤: 1.通过信息增益率筛选分支. (1)共有4个自变量,分别计算每一个自变量的信息增益率. 首先计算outlook的信息增益.outlook的信息增益Gain ...

  6. 决策树(C4.5)原理

    决策树c4.5算法是在决策树ID3上面演变而来. 在ID3中: 信息增益 按属性A划分数据集S的信息增益Gain(S,A)为样本集S的熵减去按属性A划分S后的样本子集的熵,即 在此基础上,C4.5计算 ...

  7. 《机器学习实战》学习笔记第三章 —— 决策树之ID3、C4.5算法

    主要内容: 一.决策树模型 二.信息与熵 三.信息增益与ID3算法 四.信息增益比与C4.5算法 五.决策树的剪枝 一.决策树模型 1.所谓决策树,就是根据实例的特征对实例进行划分的树形结构.其中有两 ...

  8. 机器学习总结(八)决策树ID3,C4.5算法,CART算法

    本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点. 决策树:是一种基本的分类和回归方法.在分类问题中,是基于特征对实例进行分类.既可以认为是if-then ...

  9. 决策树之C4.5算法学习

    决策树<Decision Tree>是一种预測模型,它由决策节点,分支和叶节点三个部分组成. 决策节点代表一个样本測试,通常代表待分类样本的某个属性,在该属性上的不同測试结果代表一个分支: ...

随机推荐

  1. 流API--使用并行流

    这篇博客一起来研究下使用并行流.借组多核处理器并行执行代码可以显著提高性能,但是并行编程可能十分复杂且容易出错,流API提供的好处之一是能够轻松可靠的并行执行一些操作.请求并行处理流,首先要获得一个并 ...

  2. Servlet--SingleThreadModel接口,RequestDispatcher接口

    SingleThreadModel接口 定义 public interface SingleThreadModel; 这是一个空接口,它指定了系统如何处理对同一个 Servlet 的调用.如果一个 S ...

  3. tp5无法隐藏index.php入口文件

    一: 官方文件: <IfModule mod_rewrite.c> Options +FollowSymlinks -Multiviews RewriteEngine on Rewrite ...

  4. Win10微软帐户切换不回Administrator本地帐户的解决方法--(转,虽转但亲测有效)

    在Win10系统中经常会用到微软帐户登录,如应用商店等地方,不过一些用户反馈原来使用Administrator帐户被绑定微软帐户后无法切换回本地帐户,连[改用本地帐户登录]按钮都没有,那么怎么解决呢? ...

  5. ------- 软件调试——挫败 QQ.exe 的内核模式保护机制 -------

    ------------------------------------------------------------------------ QQ 是一款热门的即时通信(IM)类工具,在安装时刻会 ...

  6. AppScan 工作原理

    Rational AppScan(简称 AppScan)其实是一个产品家族,包括众多的应用安全扫描产品,从开发阶段的源代码扫描的 AppScan source edition,到针对 Web 应用进行 ...

  7. MUI 图片上传实现

    HTML代码 <!doctype html> <html> <head> <meta charset="UTF-8"> <ti ...

  8. Java POI读取Excel数据,将数据写入到Excel表格

    1.准备 首先需要导入poi相应的jar包,包括: 下载地址:http://pan.baidu.com/s/1bpoxdz5 所需要的包的所在位置包括: 2.读取Excel数据代码 package S ...

  9. 洛谷 [P1282] 多米诺骨牌

    这道题是一道背包问题,考虑一个背包, 显然如果我们直接设dp[i]表示前i个使差值最小所需的最少翻转次数,是具有后效性的. 所以我们将直接求最值,改为求某个值是否可行,这种求最值转变为求可行性的思想是 ...

  10. BZOJ 3879: SvT [虚树 后缀树]

    传送门 题意: 多次询问,给出一些后缀,求两两之间$LCP$之和 哈哈哈哈哈哈哈竟然$1A$了,刚才还在想如果写不好这道题下节数学就不上了,看来是上天让我上数学课啊 $Suffix\ Virtual\ ...