一、概念

  动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。

1、试用情况:

2、解决步骤:

  1、拆分问题

  2、找状态(初始值)

  3、状态转移方程

3、DP问题的分类:

  1、线性dp  2、背包  3、区间dp  4、数位dp  5、状压dp  6、树形dp  7、概率dp

4、具体典例:

A线性DP:

   最长上升子序列(LIS)

/*最长上升子序列LIS---hdu1257*/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 100005 using namespace std; int dp[maxn],num[maxn];//dp[i]定义为以ai为结尾的最长上升子序列的长度
int main()
{
int n,i,j,ans;
//freopen("Atext.in","r",stdin);
while(cin >> n)
{
ans=;
for(i=;i<n;i++)
{
cin >> num[i];
dp[i]=; //每一个以ai为结尾的LIS只有两种情况,一种是他自身
} //另一种是它前面比它小的数的LIS加上ai
for(i=;i<n;i++)
{ //dp[i]=1的赋值也可以放到这里
for(j=;j<i;j++) //对每一个ai的前面走到它的路径循环记录
{
if(num[j]<num[i]) //选出以ai结尾的最长的路径保存
dp[i]=max(dp[j]+,dp[i]);
}
ans=max(dp[i],ans); //记录各个路径的最大值,即LIS
}
cout << ans << endl;
/*O(nlogn)的方式--利用二分查找
dp[i]:长度为i+1的上升子序列中末尾元素的最小值(不存在的话就是INF);
fill(dp,dp+n,INF);
for(int i=0;i<n;i++)
{
*lower_bound(dp,dp+n,a[i])=a[i];//找到>=a[i]的第一个元素,并用a[i]替换;
}
cout<<lower_bound(dp,dp+n,INF)-dp<<endl;//找到第一个INF的地址减去首地址就是最大子序列的长度;
*/
}
return ;
}

   最长公共序列(LCS)

  

/*LCS----最长公共子序列*/
#include <bits/stdc++.h> #define maxn 1005
using namespace std;
char s[maxn],t[maxn]; //待判断的字符串数组
int dp[maxn][maxn]; //si与tj对应的公共子序列的长度
int main()
{
int i,j,n,m;
cin >> n >> m;
for(i=;i<n;i++)
cin >> s[i];
for(j=;j<m;j++)
cin >> t[j];
for(i=;i<n;i++)
{
for(j=;j<m;j++)
{
if(s[i]==t[j])
dp[i+][j+]=dp[i][j]+;
else
dp[i+][j+]=max(dp[i][j+],dp[i+][j]);
}
}
cout << dp[n][m] << endl;
return ;
}
//自我心得:感觉无论是01背包还是LCS的二维数组都记录了每一种可能组合的状态,并且是该组合状态下的最优化值
//通过记录每一步状态的转移,一步步递推出最终的结果。

 B.背包(有背包九讲):

 01背包

  

/*01背包(递归版)*/
#include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 1005
using namespace std; int n,W; //int dp[n][j]; 第i个物体,背包容量为j时的价值
int w[maxn],v[maxn];
int res(int i,int j) //第i个物体,背包剩余容量j;
{
/*if(dp[i][j]>=0) 记忆化搜索,每种情况只计算一次
return dp[i][j];*/
int ans; //背包里的总价值
if(i==n) //i个物体取或不取得情况都试完了;
ans=;
else if(j<w[i]) //此物体的重量大于背包容量,一定不能取,直接下一个
ans=res(i+,j);
else
{ //取或不取的价值--递归调用
ans=max(res(i+,j),res(i+,j-w[i])+v[i]);
}
//dp[i][j]=ans;参数的组合只有n*W种,计算过的组合就存起来
return ans;
}
int main()
{
int i,j;
//memset(dp,-1,sizeof(dp));
cin >> n >> W; //n个物体,背包容量为W
for(i=;i<n;i++)
cin >> w[i] >> v[i] ;//输入每个物体的容量和价值
cout << res(,W) << endl;//从第i个物体开始,挑选总重小于等于j的部分;
return ;
}
/*01背包(普通版)*/
#include <bits/stdc++.h>
#define maxn 100
using namespace std; int w[maxn],v[maxn];//n个物体的重量及价值
int dp[maxn][maxn]; //前i个物体在背包容量为j的情况下的价值的最大值
int main()
{
int n,W,i,j;
cin >> n >> W;
memset(dp,,sizeof(dp));
for(i=;i<n;i++)
cin >> w[i];
for(j=;j<n;j++)
cin >> v[j];
for(i=;i<n;i++) //无论从前往后递推还是从后往前递推,其实都是记录所有的状态
{
for(j=;j<=W;j++)
{
if(w[i]>j)
dp[i+][j]=dp[i][j]; //dp[i+1][j]:从0到i这i+1个物体中选出总重量不超过j的物体时总价值的最大值
else
dp[i+][j]=max(dp[i][j],dp[i][j-w[i]]+v[i]);
}
}/*01 背包循环利用单数组实现
for(i=0;i<n;i++)
{
for(j=W;j>=W[i];j--) //循环利用一个数组,只记录前i个物体在背包的各种状态下的最优值。
{ //即dp数组在背包的各个容量下的最优值。
dp[j]=max(dp[j],dp[j-W[i]]+v[i]);
}
} */
cout << dp[n][W] << endl;
return ;
}
//自我心得:n个物体与j容量的背包,组合情况有n*j种,dp二维数组其实就是记录每一种状态下的最优化的值;
//然后通过状态转移方程对状态一步步将结果递推转移出来;

      完全背包

    

#include <bits/stdc++.h>
#define maxn 100
/*完全背包*/
using namespace std;
int dp[maxn][maxn];
int w[maxn],v[maxn];
int main()
{
int n,W,i,j;
cin >> n >> W;
for(i=;i<n;i++)
cin >> w[i];
for(i=;i<n;i++)
cin >> v[i];
for(i=;i<n;i++)
{
for(j=;j<=W;j++)
{
if(j<w[i])
dp[i+][j]=dp[i][j];
else //在dp[i+1][j]的计算中选择k(k>=1)个的情况,与在dp[j+1][j-W[i]]的计算中选择k-1个的情况是相同的。
dp[i+][j]=max(dp[i][j],dp[i+][j-w[i]]+v[i]);
}
}/*
for(int i=0;i<n;i++)
{
for(int j=w[i];j<=W;j++)//针对背包容量dp,只存最优值。
{
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
}
} */
cout << dp[n][W] << endl;
return ;
}
//自我心得:感觉单数组就是针对每一种背包容量情况,循环n个物体,将dp数组里不断地存入最优化的值
//PS:还可利用滚动数组,当数据限制改变也可用DP针对不同的价值计算最小的重量
//如:dp[i+1][j]:前i个物体中挑出价值总和为j时总重量的最小值。

数位dp及状压dp见(二)……

第一周 动态规划Dynamic Programming(一)的更多相关文章

  1. 6专题总结-动态规划dynamic programming

    专题6--动态规划 1.动态规划基础知识 什么情况下可能是动态规划?满足下面三个条件之一:1. Maximum/Minimum -- 最大最小,最长,最短:写程序一般有max/min.2. Yes/N ...

  2. 动态规划(Dynamic Programming)算法与LC实例的理解

    动态规划(Dynamic Programming)算法与LC实例的理解 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Le ...

  3. 动态规划Dynamic Programming

    动态规划Dynamic Programming code教你做人:DP其实不算是一种算法,而是一种思想/思路,分阶段决策的思路 理解动态规划: 递归与动态规划的联系与区别 -> 记忆化搜索 -& ...

  4. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  5. [算法]动态规划(Dynamic programming)

    转载请注明原创:http://www.cnblogs.com/StartoverX/p/4603173.html Dynamic Programming的Programming指的不是程序而是一种表格 ...

  6. 动态规划系列(零)—— 动态规划(Dynamic Programming)总结

    动态规划三要素:重叠⼦问题.最优⼦结构.状态转移⽅程. 动态规划的三个需要明确的点就是「状态」「选择」和「base case」,对应着回溯算法中走过的「路径」,当前的「选择列表」和「结束条件」. 某种 ...

  7. 动态规划 Dynamic Programming 学习笔记

    文章以 CC-BY-SA 方式共享,此说明高于本站内其他说明. 本文尚未完工,但内容足够丰富,故提前发布. 内容包含大量 \(\LaTeX\) 公式,渲染可能需要一些时间,请耐心等待渲染(约 5s). ...

  8. 最优化问题 Optimization Problems & 动态规划 Dynamic Programming

    2018-01-12 22:50:06 一.优化问题 优化问题用数学的角度来分析就是去求一个函数或者说方程的极大值或者极小值,通常这种优化问题是有约束条件的,所以也被称为约束优化问题. 约束优化问题( ...

  9. 后台开发 3个题目 array_chunk, 100块钱找零钱(动态规划 dynamic programming), 双向循环链表 llist 删除节点

    1. array_chunk 实现 http://php.net/manual/en/function.array-chunk.php <?php function my_array_chunk ...

随机推荐

  1. 布隆(Bloom)过滤器 JAVA实现

    前言 Bloom过滤器,通过将字符串映射为信息指纹从而节省了空间.Bloom过滤器的原理为,将一个字符串通过一定算法映射为八个Hash值,将八个Hash值对应位置的Bitset位进行填充.在进行校验的 ...

  2. Node类型知识大全

    Node类型 1.节点关系 每个节点都有一个childNodes属性,其中保存着一个NodeList对象.NodeList是一种类数组对象,用于保存一组有序的节点,可以通过位置来访问这些节点.请注意, ...

  3. Sqoop导入导出的几个例子

    Sqoop导入导出的几个例子 http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_importing_data_into_hive   no ...

  4. sql for xml 输出结果带单引号出现转成&apos的解决方案

    select '''' + ID +''',' from  表 for xml path('') 此SQL语句,输出结果如‘1’,’2‘,’3‘, 但是在因xml会出现path转译的问题将‘转成&am ...

  5. 关于eclipse 与OpenCV 配置频繁报错的问题总结Program "C:/SDK/android-ndk-xxx/ndk-build.cmd" is not found in PATH报错的解决!

    2018-01-3116:58:12 Program "C:/SDK/android-ndk-r8/ndk-build.cmd" is not found in PATH 今天这一 ...

  6. Azure Powershell使用已有特殊化非托管磁盘创建ARM虚拟机

    生成已有特殊化非托管磁盘的方法主要有如下两种: 1.使用StorageExplorer存储管理工具,复制特殊化磁盘到一个新的容器下 2.New Portal中删除虚拟机,默认vhd文件会保留在存储账号 ...

  7. scrapy_数据收集

    什么是数据收集器? 数据以key/value形式存在,收集一些状态,简化数据收集的状态 计算到底发送了多少request等等统计信息 如何对404页面进行设置? 通过response.status等于 ...

  8. HTML中padding和margin的区别和用法

     margin(外边距) 定义:margin是用来隔开元素与元素的间距,发生在元素本身的外部,margin用于布局分开元素使元素与元素互不相干. 提示:margin: top right bottom ...

  9. 实现iota函数

    void Reverse(char *s) { char temp; char *p = s; char *q = s; while (*p != '\0') { p ++; } q --; whil ...

  10. java日志概述和原理

    OK,现在我们来研究下Java相关的日志. 日志记录是应用程序运行中必不可少的一部分.具有良好格式和完备信息的日志记录可以在程序出现问题时帮助开发人员迅速地定位错误的根源.对于开发人员来说,在程序中使 ...